5 388.42'PLEASE RETURNED STATE DOCUMENT H3m PLEASE RETURNED NOV 25 1974 NOV 25 1974

MENASCO-McGUINN ASSOCIATES, HELENA

MOLINIA SULA 1515 E. des AVE. HELENA, MOSSIANA 59620

MONTAN ATE L'BRARY

MOLTANA J ATE JURARY East Lyndale Avenue Melana, Montana 59601 MSE JUL 25 73 AST JAN 7 '81

/

\$

Menasco-McGuinn Associates DESIGNERS - ENGINEERS 2717 Airport Way Helena, Montana 59601

health call 1419 E. 184, 2 HEALTHIN MEDISTRICA 59620

June 19, 1974

Mr. Paul R. DeVine, Chief Planning and Research Bureau Montana Department of Highways Hustad Center Helena, Montana 59601

Subject: Montana Highway Functional Classification and Needs Study - 1974 Update Final Report

Dear Sir:

It is our pleasure to submit this report on the Montana Highway Functional Classification and Needs Study - 1974 Update to the Planning and Research Bureau of the Montana Department of Highways in fulfillment of our contract agreement.

This report contains the results of the highway needs study that was conducted for a functionally classified system of highways in Montana. It is intended that the data be used for the transition to a Federal-aid system of highways composed of functionally classified routes after June 30, 1976 as required by the 1973 Federal-Aid Highway Act.

The needs reported in this study include total needs for the 1974 to 1994 (twenty-year) period. The highway needs estimated are \$8,334,409,000, about $2\frac{1}{2}$ times the estimated available funding of \$3,268,000,000.

We would like to thank the Planning and Research Bureau and the Federal Highway Administration for their assistance and review, and extend our appreciation for the opportunity to conduct this study. Comments from those local agencies that put substantial effort into reviewing the functional classification in their jurisdictions is also gratefully acknowledged.

Sincerely,

Robart J. Peccio

Robert J. Peccia, P.E.

TABLE OF CONTENTS

			Page
Abstract -			v
PART I:	INT	TRODUCTION	· 1
	A.	Intent of Study	1
	B.	Study Organization	2
	С.	History of Functional Classification	2
	D.	1973 Federal-Aid Highway Act	4
PART II:	HIC	GHWAY FUNCTIONAL CLASSIFICATION	6
	А.	Descriptions of Highway Functional Classifications	6
	B.	Review of 1970-1990 Study	8
	C.	Local Participation and Comments	9
	D.	Participation of Other Agencies	10
	E.	Urban-in-Fact Areas	10
	F.	Population Projections	10
	G.	Travel Generators	11
	H.	Rural Highway Functional Classification	11
	I.	Urban Highway Functional Classification	17
	J.	Mileage and Travel	17
	K.	Results of Highway Functional Classification	22
PART III:	NE	EDS ANALYSIS	33
	А.	Description of Needs Analysis Procedure	33
	В.	Route Numbering System	33
	C.	Describing Existing Conditions	35
	D.	Field Inventory	35
	E.	Minimum Tolerable Conditions	38
	F.	Design Standards	39
	G.	Traffic and Capacity	39
	H.	Deficiency and Improvement Analysis	40
	I.	Unit and Per-Mile Costs	48
	J.	Maintenance Costs	48

TABLE OF CONTENTS

PART IV: APPENDICES

A.	Typical Sections –		A-1
B.	Unit and Per-Mile Co	osts	B-1
C.	Needs Analysis for L	local Roads and Streets	C-1

Page

LIST OF FIGURES

Figure Number	Description	Page
1	Organization Flow Chart	3
2	Ranking of Urban Areas and Recreation Centers	16
3	Rural Arterial Systems	18
4	Rural Functional Classification	19
5	Rural Arterial and Collector Worksheet	36
6	Urban Arterial and Collector Worksheet	37
7	Improvement Analysis Guide - Rural Principal Arterials	43
8	Improvement Analysis Guide - Rural Minor Arterials and Collectors	44
9	Improvement Analysis Guide - Urban Principal Arterials	45
10	Improvement Analysis Guide - Urban Minor Arterials	46
11	Four-Lane Routes	52

LIST OF TABLES

Table		
Number	Description	Page
1	1990 County Population Estimates	12
2	1990 Urban-In-Fact Population Estimates	13
3	Urban-Rural Population Distribution	14
4	1990 Recreation Area Visitation Estimates and Equivalent Population as Traffic Generators	15
5	Development of 1990 Rural Local Road Miles	23
6	Development of 1990 Urban Local Street Miles	24
7	Rural Mileages and Travel by County	25
8	Urban Mileages and Travel	26
9	Mileage and Travel Summary	27
10	1990 Rural Data Summary	28
11	Urbanized Area Data Summary - Billings	29
12	Urbanized Area Data Summary - Great Falls	30
13	Urbanized Area Data Summary - Missoula	31
14	Urbanized Area Data Summary - Small Urban 5,000 - 50,000	32
15	Minimum Tolerable Conditions for Rural Arterials and Collectors	41
16	Minimum Tolerable Conditions for Urban Arterials and Collectors	42
17	Annual Per-Mile Maintenance Costs	49
18	Administration Costs as a Percentage of Construction	50
19	Individual Urban Functional Systems Needs	53
20	Functional Systems Needs Summaries	54
21	Available Funds for Highway Investment	55

ABSTRACT

In 1971 the Montana Department of Highways conducted the Montana Highway Functional Classification and Needs Study (1970-1990). That study was part of a national highway study mandated by Congress, administered by the Federal Highway Administration, and conducted by all of the states. That study was the first time that a total highway needs study conducted in all states and using uniform criteria had been completed. At that time it was conjectured (but not known) that the highway functional classification study would be used to realign the Federal-aid highway system.

The results of that study are contained in a report to Congress entitled the 1972 National Highway Needs Report. This report was prepared and submitted to Congress in March of 1972. Data contained in that report significantly affected legislation for highways. The 1973 Federal-Aid Highway Act in particular reflects some of the recommendations of that report.

In any national study, however, there are states that do not fit standards established for the average state. Montana is one of these. The rural nature and low population density of Montana require design standards that are in conflict with the design standards established by the Federal Highway Administration for the 1970-1990 Study.

The Montana Department of Highways recognized this problem, as well as the significance of realigning the Federal-aid system on a functional basis. Limitations of such a study conducted for the first time and without a well defined purpose were also noted. Limited interest and input at the local level provided additional justification for the decision to reconduct the study based upon state design standards and using state criteria. This report contains the results of an update of the 1970-1990 Study, and is entitled the *Montana Highway Functional Classification and Needs Study - 1974 Update.*

During this study, we have been very conscious of placing emphasis on local priorities and preferences. All officials of urban areas over 5,000 and all county commissioners were invited to participate and comment on the highway functional classification. Reviews and comments from a majority of these cities and counties were received and an attempt was made to incorporate local preferences whenever consistent with the criteria.

The 1974 Update is a substantial refinement on both the highway functional classification and the needs analysis from the 1970-1990 Study. However, planning of highways is a dynamic process, and as conditions change so will this study. It is our belief that we have provided the most complete picture of highway needs in Montana based upon current information, and hope that this study will prove beneficial in the continuing highway planning process.

Digitized by the Internet Archive in 2012 with funding from Montana State Library

http://archive.org/details/montanahighwayf0697mena

PARTI

INTRODUCTION

/

PART I – INTRODUCTION

A. INTENT OF STUDY

When the Montana Highway Functional Classification and Needs Study (1970-1990) was conducted by the Department of Highways in 1971, there were several weaknesses in the study which the Department of Highways felt should be rectified. These weaknesses were as follows:

- (1) As the Department of Highways solicited comments and reviews on functional classification from local agencies, it was difficult to convince the local agencies of the importance of the study. This was because no commitment to realign the federal-aid system had been made by the Department of Transportation, and the Department of Highways could only conjecture on the future use of the study. Consequently, the input from local agencies was not as thorough as it should have been.
- (2) To allow for needs comparisons between states across the nation, the 1970-1990 Study used the same minimum tolerable conditions and design standards across the nation. In Montana, many of these standards were not consistent with design and construction standards currently being used in the state. It was therefore felt that a modification of the 1970-1990 Study should utilize current Montana construction criteria to give a realistic estimate of the total highway needs in the state.
- (3) The sampling procedure used in the 1970-1990 Study was considered inadequate for the state's use in particular project needs. The 1974 Update therefore provided for a 100% inventory of projects that were potentially on the state system.
- (4) New data coming to light since the 1970-1990 Study included the construction of Big Sky Recreation Area, new population information, several new transportation and comprehensive development plans, a secondary roads study, and an increased interest in realignment of the federal-aid highway system on a functional basis. This new information affected the functional classification and needs study, and required that adjustments be made.

The study described in this report, the Montana Highway Functional Classification and Needs Study - 1974 Update, has taken these considerations into account and has incorporated the following:

- (1) Increased participation from local agencies.
- (2) Adjustments to agree with new transportation studies.
- (3) Revised minimum tolerable conditions and design standards to agree with current Montana standards.
- (4) Costing figures updated to 1971 and 1972 prices.
- (5) Increased sampling to 100% on roads which may become part of the federal-aid system.

B. STUDY ORGANIZATION

This study was conducted with highway planning and research funds. The Planning and Research Bureau of the Department of Highways conducted the study in cooperation with the Federal Highway Administration. The Department of Highways retained the consulting firm of Menasco-McGuinn Associates to provide the staffing effort required to complete the study.

Concurrently with the Montana Highway Functional Classification and Needs Study - 1974 Update, two other studies were also conducted: (1) The 1974 National Highway Needs Study requested by the Federal Highway Administration, and (2) Montana's portion of the 1974 National Transportation Study requested by the United States Department of Transportation. The results of these two reports are contained in separate publications.

C. HISTORY OF HIGHWAY FUNCTIONAL CLASSIFICATION

A highway functional classification and needs study is composed of two relatively independent studies: a highway functional classification study and a needs analysis study. Highway functional classification is the process of grouping highways into classes according to their use or function. Needs analysis is the process of estimating the cost to upgrade the functionally classified highways to an established standard.

Since the design standards (and hence the costs) are dependent upon the functional classification, the two studies are inter-related. Studies relating to highway functional classification and needs that have been done in Montana or are currently underway are as follows:

(1) 1968 National Highway Functional Classification Study - State of Montana

The first national study on highway functional classification was the 1968 National Highway Functional Classification Study. This study functionally classified all highways in the United States based upon how they functioned in 1968. No projections were done and no needs were estimated. This study looked at highways as they existed in 1968, and established their functional classification. This study provided the basic highway functional classification from which other studies projected.

(2) National Highway Functional Classification and Needs Study (1970-1990)

The sequel to the 1968 National Highway Functional Classification Study was the National Highway Functional Classification and Needs Study (1970-1990). This study, using the 1968 Study as a base, projected a highway functional classification for conditions as they would exist in the year 1990. In addition, the needs to construct, maintain, and administer the 1990 system to an adequate level based upon national standards were estimated. Because of the scope of the study and the limited time available, needs were estimated on a sampling of each functional system.

- 3 -

(3) 1974 National Highway Needs Study

To aid the Federal Highway Administration in evaluating the needs as reported in the 1970-1990 Study, the Federal Highway Administration requested additional data on highway needs. This study provided that data.

(4) 1972 National Transportation Study

This study was a multi-modal transportation study encompassing the intentions and results of the National Highway Functional Classification and Needs Study, but expanding the scope to all modes of transportation. This study was administered at the national level by the Department of Transportation and again conducted by the states. The intent of the study was to gather data on all modes of transportation and to assess alternate levels of transportation investment by the federal government.

(5) 1974 National Transportation Study

As a sequel to the 1972 National Transportation Study, this study provides the best picture available on the existing state and proposed state of the transportation systems in the United States. Administered by the Department of Transportation, this study reports data in three parts: (1) the 1972 Inventory; (2) the 1980 Program; and (3) the 1990 Plan. To insure that the data submitted is reasonable, the sources of funds to be used to finance the 1980 Program also had to be reported.

(6) Montana Highway Functional Classification and Needs Study - 1974 Update

The study that is reported in this document, the Montana Highway Functional Classification and Needs Study - 1974 Update, is a refinement of the National Highway Functional Classification and Needs Study (1970-1990). This study approaches highway needs from the standpoint of state rather than national criteria and standards. Also, all roads that may be part of the federal-aid system in the future (principal arterials, minor arterials, and major collectors in rural areas, and principal arterials and minor arterials in urban areas) were inventoried 100% to give a more accurate picture of needs on the state system of roads.

D. 1973 FEDERAL-AID HIGHWAY ACT

The 1973 Federal-Aid Highway Act was passed by Congress just as the Montana Department of Highways was beginning the 1974 Update of the Montana Highway Functional Classification and Needs Study. Statements contained in the 1973 Federal-Aid Highway Act on the realignment of the federal-aid highway system added support to the need for a thorough highway functional classification and needs study. These statements, contained in Section 148 of the *Federal-Aid Highway Act of 1973*, are as follows:

- After June 30, 1976, the Federal-Aid primary system shall consist of an adequate system of

connected main roads important to interstate, statewide, and regional travel, consisting of rural arterial routes and their extensions into or through urban areas.

- After June 30, 1976, the Federal-Aid secondary system shall consist of rural major collector routes.

- After June 30, 1976, the Federal-Aid urban system shall be located in each urbanized area and such other urban areas as the state highway departments may designate, and shall consist of arterial and collector routes, exclusive of urban extensions of the Federal-Aid primary system.

As noted by these statements, the highway functional classification and needs studies that have been completed in the past have been used to develop meaningful legislation on highways. The Montana Highway Functional Classification and Needs Study just completed and contained in this report will put Montana in a better position to adjust the state's federal-aid system as required by the Federal-Aid Highway Act of 1973. /

PARTIII

HIGHWAY FUNCTIONAL

CLASSIFICATION

PART II – HIGHWAY FUNCTIONAL CLASSIFICATION

A. DESCRIPTIONS OF HIGHWAY FUNCTIONAL CLASSIFICATIONS

Highway functional classification is described as:

...the process by which highways are grouped into classes or systems according to the type of service they are intended to provide.

The highway classifications used in this study and the characteristics of these classifications are as follows:

(1) Rural Systems

The rural highway functional systems are comprised of principal arterials, minor arterials, major and minor collectors, and local roads.

(a) Rural Principal Arterials

Rural principal arterial is the highest level of rural highway functional classification. This system of highways is characterized by the longest trip lengths and heaviest travel densities, and is intended to serve most large urban areas. In addition, this system is an interconnected network of continuous routes without stub connections. The interstate system is an automatic component of this classification of highway. The percentage guidelines on rural principal arterials, specified by the Federal Highway Administration, are 2 to 4 percent of the total rural miles.

The 1990 rural principal arterial system developed for Montana consists of 4.6 percent of the total rural mileage. This is .6 percent above the upper limit of 4 percent specified by the Federal Highway Administration. However, it is felt that the State of Montana consisting of large undeveloped area having little or no road mileage (almost 30 percent of the state is federally owned of which the vast majority is national park, wilderness and national forest area, or Indian reservation) is a valid exception from the percentage limits. These large areas of little or no road mileages decrease the number of total rural miles, which consequently increases the percent of rural principal arterial mileage. The rural principal arterial system that was designated is considered to be the minimum highway network required for travel of the type that is specified for this system.

(b) Rural Minor Arterials

Rural minor arterial is the next level of rural highway functional classification. These highways link cities and larger towns not connected by a rural principal arterial, are spaced so that all developed areas of a state are within a reasonable distance of an arterial highway, and provide service to travel of primarily intrastate importance. This system interconnects with the rural principal arterial system and forms an integrated network of arterial highways.

(c) Rural Major and Minor Collectors

Rural major and minor collectors provide service to travel of primarily intra-county importance, with travel lengths and speeds being less than those on the arterial systems. The rural major collectors serve the more important travel generators in the counties such as county seats, consolidated schools, mining areas, etc., and the more heavily trafficked corridors. The minor collectors are primarily for land use and are spaced at intervals consistent with population density, and provide service to the remaining smaller travel generators.

(d) Rural Local Roads

Rural local roads consist of the roads which were not classified under a higher system. Their purpose is to provide land access and service to travel over short distances.

Percent limitations by system recommended by the Federal Highway Administration and the actual percent of mileage in each system for the rural systems are as follows:

Functional System	1990 Mileage	<u>%</u>	Recommended % Limits
Principal Arterials	3,127.6	4.6	2 - 4
Principal Arterials plus Minor Arterials	6,979.8	10.3	6 - 12
Major and Minor Collectors	16,274.8	23.9	20 - 25
Local Roads	44,676.2	65.8	65 - 75

(2) Urban Systems

The urban highway functional systems are comprised of principal arterials, minor arterials, collectors, and local streets.

(a) Urban Principal Arterials

Urban principal arterial is the highest type of urban highway functional classification in an urban area. These highways serve the major centers of activity, the highest traffic volume corridors, and the longest trip lengths within an urban area, carry a high proportion of the projected travel on a minimum of mileage, and form an integrated network of highways. Connecting links of rural principal and minor arterial highways, (those highways which provide rural-to-rural continuity through an urban area) are automatically classified as urban principal arterials. As with the rural principal arterials, interstate highways are an automatic component of the urban principal arterial system.

(b) Urban Minor Arterials

Urban minor arterial is the second level of highway in the urban functional classification. The urban minor arterials interconnect with and augment the urban principal arterials, provide service to trips of moderate lengths, offer a lower level of travel mobility than urban principal arterials, and serve urban travel generators of moderate importance. Urban connections to all rural major collectors and most rural minor collectors are classified as urban minor arterials.

(c) Urban Collectors

Urban collectors are intended to provide land access service and to channel traffic from local roads to the arterial systems. Minor traffic movements within residential, commercial, or industrial areas are also a function of the urban collector system.

(d) Urban Local Streets

Urban local streets consist of all the remaining highways not on one of the higher systems. The purpose of this system is to provide land access and access to a higher type of highway.

Percent limitations by system recommended by the Federal Highway Administration and the actual percent of mileage in each system for the urban systems are as follows:

Functional System	1990 Mileage	<u>%</u>	Recommended % Limits
Principal Arterials	253.8	8.4	5 - 10
Principal Arterials plus Minor Arterials	533.3	17.6	15 - 25
Collectors	285.8	9.5	5 - 10
Local Streets	2,207.5	72.9	Remainder

B. REVIEW OF 1970-1990 STUDY

A substantial part of the 1974 Update of the Montana Highway Functional Classification and Needs Study was based on the Montana Highway Functional Classification and Needs Study (1970-1990). The 1970-1990 Study was mandated by Congress, administered by the Federal Highway Administration, and conducted by the states. The criteria for this study was established by the Federal Highway Administration, and closely controlled so that the results could be compared across the nation. The 1974 Update, in contrast, was initiated by the state to prepare for the realignment of the federal-aid system on a functional basis. State standards were used, and an extensive effort was made to obtain local participation.

The approach used to conduct the 1974 Update was to review and use the 1970-1990 Study as a base. Most of the urban areas and counties had responded to the 1970-1990 Study, and commented on the functional classifications in their areas. It was initially felt that the 1970-1990 Study could be used as a base with very few changes. However, as we progressed through the 1974 Update, it became very clear that two factors resulted in a number of changes being made in the classified systems at the local level. These factors were: (1) as officials in local jurisdictions changed, so did priorities on the importance of roads within these jurisdictions, and (2) since the 1973 Federal-Aid Highway Act clarified and substantiated the realignment of the federal-aid system significantly more interest was generated during the 1974 Update.

By using the 1970-1990 Study as a base, and adjusting to correspond to new priorities as established by comments from local agencies, the functional classification as it evolved during the 1974 Update should be very compatible with the needs of the state. It is cautioned, however, that as local officials and local conditions change, so do local priorities. Provisions should be made for flexibility in the highway functional classification systems to permit modifications which are supported by factual data.

C. LOCAL PARTICIPATION AND COMMENTS

A concerted effort was made during the 1974 Update to involve local agencies to the extent possible. Letters were sent to all county commissioners, mayors of cities over 5,000 population, and to city-county planning directors of cities over 5,000. In addition, a presentation was made at the annual meeting of the League of Cities and Towns, and a notification was placed in the monthly bulletin distributed to all county commissioners by the Association of County Commissioners.

All of these agencies were offered an opportunity to attend a meeting in their area on the highway functional classification and needs study. To present data and answer questions at these meetings were representatives of the Department of Highways, Federal Highway Administration, and the Consultant. The division engineer for the Highway Department for the area also attended the meetings. Discussed during the meetings were the background of highway functional classification, criteria for each classification, limitations of mileages, and the functional classification developed during the 1970-1990 Study. Each local agency was requested to comment on the functional classification in their jurisdiction. Every attempt was made to comply with local requests within the limitations of the criteria established.

In those cases where the local agencies were unable to attend the meetings, it was requested that they send their comments by letter to the Planning and Research Bureau, Department of Highways for consideration.

The offer was also made to the local agencies that a special meeting would be held if they so requested. Most of the larger urban areas had special meetings at which the highway functional classifications were discussed.

The response for the 1974 Update was very satisfactory. All counties except Madison, Fallon, Glacier, Golden Valley, Treasure, Liberty and Musselshell, and all urban-in-fact areas over 5,000 by 1990 except Dillon, Glendive, Miles City, Glasgow and Sidney responded to the request for comments. These comments are currently on file with the Planning and Research Bureau.

D. PARTICIPATION OF OTHER AGENCIES

Other agencies in addition to local county and city officials were also contacted and comments solicited. Montana has almost one third of its land in federal domain, and the federal agencies have a significant impact on the road system in the state.

The Forest Service, the Bureau of Indian Affairs, and the Bureau of Land Management were all involved in the study. These agencies thoroughly reviewed the highway functional classifications, and commented on the roads within their jurisdictional areas.

E. URBAN-IN-FACT AREAS

Urban-in-fact areas are defined as those areas with a 1990 population of 5,000 or greater inside of the urban-in-fact boundary. To be included in the urban-in-fact boundary, an area must have a population density of 1,000 or more inhabitants per square mile, or be devoted to an urban use such as airports, parks, factories, cemeteries, or the like. There are 18 urban areas that are projected to have a 1990 urban-in-fact population of 5,000 or greater.

1990 urban-in-fact boundaries were established for the 1970-1990 Study. These boundaries were reviewed in comparison to new comprehensive plans that were completed since the 1970-1990 Study, and boundaries adjusted to comply accordingly.

F. POPULATION PROJECTIONS

Since only the preliminary 1970 Census figures were available when population projections were made for the 1970-1990 Study, the county and urban-in-fact area population projections were updated for this study. The final 1970 population estimates were substantially different from the pre-liminary Census figures and significantly affected the population projections.

Other new data used to evaluate the population projections were a 1990 population projection done by the Division of Research and Information Systems–Department of Intergovernmental Relations, and 1971 and 1972 population estimates by county done by the U.S. Department of Commerce. Since the population projections supplied by the Information Systems Bureau were based solely on regression analysis, those counties that had been losing population would continue to lose at the same rate. This was not consistent with the assumptions made for this study; therefore, new population projections were made for 1990.

Assumptions used in projecting populations were: (1) the rural population in eastern farming regions would remain relatively stable over the planning period; (2) the urban-rural population distribution in the western mountainous counties would remain relatively constant; and (3) in general, the major population changes would occur in the urban areas.

1990 populations for the 56 counties were projected independently based upon historical popu-

lation trends and existing data on population projections for that county (such as comprehensive development plans). Population projections for all urban areas of 2,000 and over were also projected independently. Urban-rural population distributions were calculated and compared with past trends, and the population projections adjusted as necessary.

The total state population for 1990 has been held at 860,000 as provided by the Federal Highway Administration. 1990 county population estimates are shown in Table No. 1, 1990 urban-infact population estimates are shown in Table No. 2, and the urban-rural population distribution is shown in Table No. 3. Ranking of urban areas by population is shown in Figure No. 2.

G. TRAVEL GENERATORS

In addition to urban areas, recreation centers also generate a substantial amount of traffic. Visitation estimates for the major recreation centers within the state were obtained from the State Department of Fish and Game or, in some cases, directly from the recreation center. Projections to 1990 visitations were made from historical visitation records.

The visitation estimates were converted into equivalent population centers by means of the following equation:

Equivalent Population = $160 \left(\frac{\text{Visitations}}{100,000}\right)^{1.7}$

Table No. 4 shows the 1972 and 1990 visitations and the equivalent population for each major recreation area.

Ranking of the equivalent populations of the recreation centers is shown with the ranking of the urban areas in Figure No. 2.

H. RURAL HIGHWAY FUNCTIONAL CLASSIFICATION

Two changes in the 1990 rural highway functional classifications had been accepted by the Montana Highway Commission since the 1970-1990 Study. These changes were to upgrade the Terry-Brockway (FAS 253) and Broadus-Biddle (FAP 54) roads from major collectors to minor arterials.

A number of other changes were suggested by county commissioners who had reviewed their functional classifications. The majority of changes came in the major collector category, since the principal arterial and minor arterial systems are relatively inflexible. The interest in major collectors was a result of the statement in the 1973 Federal-Aid Highway Act which said: *After June 30, 1976, the Federal-Aid secondary system shall consist of major collector routes.*

The Montana Department of Highways has interpreted this statement to mean that to be considered as a federal-aid secondary, the road must first be classified as a major collector. During the meetings with county commissioners this point was emphasized and, consequently, most of the response from rural local officials was in this class of roads.

TABLE NO. 1

1990 COUNTY POPULATION ESTIMATES

(Sept. 1973)

County	1970 Population	1990 Projected Population	Adjusted 1990 Population	County	1970 Population	1990 Projected Population	Adjusted 1990 Population
Beaverhead	- 8,187	9,919	10,300	Madison	- 5,014	5,107	5,300
Big Horn	- 10,057	9,793	10,100	Meagher	- 2,122	2,161	2,200
Blaine	- 6,727	6,764	7,000	Mineral	- 2,958	3,151	3,300
Broadwater	- 2,526	2,563	2,700	Missoula	- 58,263	85,506	88,400
Carbon	- 7,080	7,290	7,500	Musselshell	- 3,734	3,867	4,000
Carter	- 1,956	1,928	2,000	Park	- 11,197	11,531	11,900
Cascade	- 81,804	100,510	103,800	Petroleum	- 675	688	700
Choteau	- 6,473	6,437	6,700	Phillips	- 5,386	5,343	5,500
Custer	- 12,174	12,037	12,400	Pondera	- 6,611	6,956	7,200
Daniels	- 3,083	3,042	3,100	Powder River-	- 2,862	3,155	3,300
Dawson	- 11,269	11,134	11,500	Powell	- 6,660	6,630	6,900
Deer Lodge	- 15,652	15,776	16,300	Prairie	- 1,752	1,726	1,800
Fallon ————	- 4,050	3,937	4,100	Ravalli	- 14,409	20,403	21,100
Fergus	- 12,611	12,656	13,100	Richland	9,837	9,815	10,100
Flathead	- 39,460	53,460	55,300	Roosevelt	- 10,365	10,483	10,800
Gallatin	- 32,505	47,338	48,900	Rosebud	- 6,032	6,166	6,400
Garfield	- 1,796	1,798	1,900	Sanders	- 7,093	8,016	8,300
Glacier	10,783	10,842	11,200	Sheridan	- 5,779	5,840	6,000
Golden Valley	931	916	900	Silver Bow	- 41,981	41,791	43,200
Granite	- 2,737	2,669	2,800	Stillwater	- 4,632	4,816	5,000
Hill	17,358	17,629	18,200	Sweet Grass	- 2,980	3,090	3,200
Jefferson	- 5,238	7,120	7,400	Teton	- 6,116	6,308	6,500
Judith Basin –	- 2,667	2,684	2,800	Toole	- 5,839	5,870	6,100
Lake ————	14,445	17,086	17,700	Treasure	- 1,069	1,135	1,200
Lewis & Clark-	33,281	43,645	45,100	Valley	- 11,471	11,736	12,100
Liberty	2,359	2,430	2,500	Wheatland	- 2,529	2,415	2,500
Lincoln	18,063	27,436	28,400	Wibaux	- 1,465	1,383	1,400
McCone	- 2,875	2,678	2,800	Yellowstone -	- 87,367	115,318	119,100
TOTAL					694,345	831,923	860,000

TABLE NO. 2

1990 URBAN-IN-FACT POPULATION ESTIMATES

(Oct. 1973)

Urban-In-Fact Area		1970 Estimate	1990 Estimate	Population Change 1970-1990	Percent Change 1970-1990	
1.	Billings	71,235	107,000	+35,765	+50.2%	
2.	Great Falls	70,700	98,000	+27,300	+38.6	
3.	Missoula	41,720	76,500	+34,780	+83.4	
4.	Butte	35,290	40,000	+ 4,710	+13.3	
5.	Helena	23,600	38,000	+14,400	+61.0	
6.	Bozeman	18,138	32,000	+13,862	+76.4	
7.	Kalispell	14,050	25,000	+10,950	+77.9	
8.	Havre	11,600	13,500	+ 1.900	+16.4	
9.	Miles City	9,730	11,000	+ 1,270	+13.1	
10.	Anaconda	9,720	11,000	+ 1,280	+13.2	
11.	Libby	6,450	9,900	+ 3,450	+53.5	
12.	Livingston	7,100	7,900	+ 800	+11.3	
13.	Lewistown	6,700	7,600	+ 900	+13.4	
14.	Glendive	6,190	6,750	+ 560	+ 9.0	
15.	Dillon	4,660	6,150	+ 1,490	+32.0	
16.	Laurel	4,550	6,000	+ 1,450	+31.9	
17.	Glasgow	4,720	5,400	+ 680	+14.4	
18.	Sidney	4,700	5,100	+ 400	+ 8.5	
[∗] 19.	Deer Lodge	4,300	4,650	+ 350	+ 8.1	
⊧20.	Cut Bank	3,884	4,400	+ 516	+13.3	
*21.	Whitefish	3,500	4,300	+ 800	+22.9	
*22.	Hamilton	2,600	4,200	+ 1,600	+61.5	
*23.	Wolf Point	3,207	3,650	+ 443	+13.8	
*24.	Shelby	3,106	3,400	+ 294	+ 9.5	
*25.	Polson	2,431	3,200	+ 769	+31.6	
*26.	Hardin————	2,758	3,100	+ 342	+12.4	
*27.	Conrad	2,767	2,950	+ 183	+ 6.6	
*28.	Baker	2,541	2,750	+ 209	+ 8.2	
*29.	Red Lodge	1,811	2,000	+ 189	+10.4	
*30.	Chinook	1,793	1,950	+ 157	+ 8.8	

* Not Urban-In-Fact Areas. Projections provided for information purposes only.

TABLENO.3

			1970				1990		
	City	County	County Population	U-I-F Population	Rural Population	% Urban	County Population	U-I-F Population	% Urban
1.	Billings	Yellowstone	87,367	71,235	*14,874	81.5	119,100	107,000	89.8
2.	Great Falls	Cascade	81,804	70,700	9,043	86.4	103,800	98,000	94.4
3.	Missoula	Missoula	58,263	41,720	16,437	71.6	88,400	76,500	86.5
4.	Butte	Silver Bow	41,981	35,290	6,366	84.1	43,200	40,000	92.6
5.	Helena	Lewis & Clark	33,281	23,600	9,349	70.9	45,100	38,000	84.3
6.	Bozeman	Gallatin	32,505	18.138	13,559	55.8	48,900	32,000	65.4
7.	Kalispell	Flathead	39,460	14,050	**24,842	35.6	55,300	25,000	45.2
8.	Havre	Hill	17,358	11,600	5,320	66.8	18,200	13,500	74.2
9.	Miles City	Custer	12,174	9,730	2,274	79.9	12,400	11,000	88.7
10.	Anaconda	Deer Lodge	15,652	9,720	5,739	62.1	16,300	11,000	67.5
11.	Libby	Lincoln	18,063	6,450	11,931	35.7	28,400	9,900	34.9
12.	Livingston	Park	11,197	7,100	3,794	63.4	11,900	7,900	66.4
13.	Lewistown	Fergus	12,611	6,700	5,481	53.1	13,100	7,600	58.0
14.	Glendive	Dawson	11,269	6,190	4,837	54.9	11,500	6,750	58.7
15.	Dillon	Beaverhead	8,187	4,660	3,388	56.9	10,300	6,150	59.7
16.	Laurel	Yellowstone	87,367	4,550	N/A	5.2	119,100	6,000	5.0
17.	Glasgow	Valley	11,471	4,720	6,318	41.1	12,100	5,400	44.6
18.	Sidney	Richland	9,837	4,700	4,900	47.8	10,100	5,100	50.5

URBAN-RURAL POPULATION DISTRIBUTION (Oct. 1973)

.

* Includes Laurel.

** Includes Whitefish.

TABLE NO. 4

1990 RECREATION AREA VISITATION ESTIMATES

and

EQUIVALENT POPULATION AS TRAFFIC GENERATORS

	Visitation	Equivalent	
Area	1972 Actual	1990 Estimated	Population 1990
Yellowstone	2,246,827	3,450,000	65,800
Glacier	1,370,101	1,970,000	25,400
Big Sky	(1)	1,200,000	13,580 ⁽²⁾
Custer	387,717	550,000	2,920
Big Horn Canyon	220,316	340,000 ⁽³⁾	1,300
Flathead	185,000	305,000 ⁽³⁾	1,100
Canyon Ferry	165,000	253,340(3)	780
Lewis & Clark	76,000	116,690 ⁽³⁾	200
Makoshika	42,000	64,486(3)	(4)
Clark Canyon	25,000	41,000 ⁽³⁾	(4)
Others	Data not available.		

(1) Non-existent in 1972.

(2) Includes permanent population of 2,700.

(3) Yellowstone projection factor applied.

(4) Less than 100.

Makoshika Park

FIGURE NO. 2

- 16 -

The rural arterial routes are contained in Figure No. 3. Figure No. 4 shows all of the statewide classified systems except local roads. Detailed functional classification systems by county are available from the Planning and Research Bureau of the Department of Highways in Helena.

I. URBAN HIGHWAY FUNCTIONAL CLASSIFICATION

Urban area highway functional classifications were compared with new comprehensive plans and transportation plans that had been completed since the 1970-1990 Study, and recommendations for adjustment developed accordingly.

The urban highway functional classifications were presented to the urbanized area Technical Advisory Committees of Billings and Great Falls. These committees conducted a thorough review of the functional classifications in their areas, and recommended adjustments on several highways.

Separate presentations were made to the Cities of Missoula, Butte, Helena, Bozeman, and Kalispell; in some cases to local technical staff and in some cases to the city commissions. Reviews by these cities and responses from them were incorporated into the highway functional classifications.

Response from the smaller communities was not quite as good. However, they were all contacted and offered the opportunity to review and comment on their highway functional classifications. The lack of response was interpreted as concurrence in the classified systems established for communities not responding. Since smaller communities are not as dynamic and changing as the larger communities mentioned above it is felt that this assumption is reasonably correct, and that very little change from the functional classification established in the 1970-1990 Study has occurred.

Maps of the functional classifications in the 18 urban areas projected to be over 5,000 population by 1990 are available from the Planning and Research Bureau, Department of Highways in Helena.

J. MILEAGE AND TRAVEL

- (1) Rural
 - (a) Mileage

The classified rural systems of principal arterial, minor arterial, and major collector were 100% inventoried. The mileage obtained from the field inventory was compared with the Federal-Aid Road Log (or the Department of Highway's local road inventory if not on a FAP or FAS system) on a section-by-section basis and adjusted as necessary. The classified mileage in the rural area consequently agrees with the state's records by route. Rural minor collector miles were obtained from the Department of Highways local road inventory by county.

Certain assumptions were made in determining rural local road mileages. These as-

sumptions were that the rural local road mileage will remain constant over the study period (the trend of losing local road mileage will offset new roads from rural subdivisions) except for new mileage generated by construction of the interstate system.

The steps used to determine the 1990 rural local road mileage are as follows:

- 1972 county-wide road mileages were tabulated by county from the Federal-Aid Road Log.
- 2. Existing 1972 road and street mileages inside of the 1990 urban-in-fact boundary were subtracted from the 1972 county road mileages, leaving 1972 rural miles.
- 3. New mileages due to interstate frontage roads and retained primary along interstate routes were developed.
- The new mileages were added to the 1972 rural mileages to obtain 1990 rural mileages by county.

The development of the rural local road mileage is shown in Table No. 5.

(b) Travel

For the classified systems of principal arterial, minor arterial, and major collector that were 100% inventoried, current and projected traffic was coded for each section. The traffic volumes were multiplied by the section lengths to obtain the daily vehicle miles of travel by county for each functional system.

On minor collectors, the sample taken during the 1970-1990 Study (about 10% of the rural minor collector mileage) was used as a base. Current and projected traffic was applied to each section of the sample and expanded to a state-wide figure by multiplying by the ratio of the state minor collector miles to the sampled minor collector miles. The state-wide minor collector travel was then apportioned to each county according to the ratio of the rural population of each county to the state-wide rural population.

Travel on rural local roads was determined by using the average daily traffic on rural local roads from the Department of Highways TF-1 mileage and travel projection table and multiplying by the miles of local road in the state. The state-wide local road travel was then appropriated to each county in the same manner as the rural minor collectors.

Rural mileage and travel by county for each functionally classified system is shown in Table No. 7.

(2) Urban

(a) Mileage

Classified urban systems of principal arterials and minor arterials were 100% field inventoried. Of those sections that were on a FAP or FAS, the inventoried miles were compared with the Federal-Aid Road Log and adjusted to comply with the state's records. /

Roads not on a FAP or FAS system were scaled from Highway Department maps and the lengths compared with the field inventory.

Mileages of urban collectors were determined by scaling from Department of Highways maps.

Urban local streets were obtained by the following process:

- The density of roads in each urban area as they existed in 1968 was determined by dividing the 1968 street mileage by the area inside of the 1968 urban-in-fact boundaries.
- 2. The area inside of the 1990 urban-in-fact boundary for each urban area was measured.
- 3. The ratio of miles-of-road-per-square-miles-of-urban-area as determined for 1968 was applied to the 1990 urban-in-fact areas, resulting in total urban street mile-ages for 1990.
- 4. Miles of classified streets were subtracted from the total street mileages, leaving local street miles.

The assumption inherent in this process is that the density of streets will remain constant in any particular community as the area becoming urban enlarges.

The development of urban local street mileage is shown in Table No. 6.

(b) Travel

The urban principal arterials and minor arterials were 100% inventoried and current and projected traffic was coded on each worksheet. The vehicle miles of travel for these systems were calculated by multiplying the length of each section by the traffic volume.

A sample on urban collectors was available from the 1970-1990 Study. Current and projected traffic was coded on these worksheets and expanded to a state-wide travel figure. The state-wide travel was apportioned to each urban area according to the ratio of the urban population of each urban area to the state-wide urban population.

Travel on urban local streets was determined by using the average daily traffic on urban streets from the Department of Highway's TF-1 table, and multiplying by the miles of local road in the state. The state-wide local street travel thus calculated was apportioned to each urban area in the same manner as the urban collectors.

Mileage and travel for each urban area by functional system is shown in Table No. 8.

A summary of urban and rural mileage and travel by functional system is shown in Figure No. 9. This table also shows the average traffic volume by system and the anticipated growth of travel from 1972 to 1990.

(3) Jurisdictional Responsibility

Mileage and travel for each functional system for the interstate, federal-aid primary, federal-aid secondary and non-federal-aid is shown in data summary Tables No. 10, 11, 12, 13, and 14.

K. RESULTS OF HIGHWAY FUNCTIONAL CLASSIFICATION

The result of the highway functional classification part of the study is a current classification by function of urban and rural highways in Montana. This classification reflects local preferences and priorities which were obtained from meetings with the local agencies and obtaining comments. The functionally classified systems are shown on county maps and urban area maps at the office of the Planning and Research Bureau, Department of Highways. Copies of these maps can be obtained at a nominal cost from the Department of Highways. -

DEVELOPMENT OF 1990 RURAL LOCAL ROAD MILES

		197	2	1972 to 1990	·	1990				197	22	1972 to 1990	
	County	Total County Miles ⁽¹⁾	Total Urban Miles ⁽²⁾	New Rural Miles	Rural County Miles	Classified Miles	Rural Local Road Miles		County	Total County Miles ⁽¹⁾	Total Urban Miles ⁽²⁾	New Rural Miles	Rural County Miles
		1	2	3	4=1-2+3	5	6=4-5	—		1	2	3	4=1-2+3
1.	Beaverhead	1,549.9	27.0	7.3	1,530.2	663.5	866.7	29.	Madison	1,411.0		7.3	1,418.3
2.	Big Horn	1,368.2		85.8	1,454.0	581.9	872.1	30.	Meagher	805.6			805.6
3.	Blaine	1,684.2			1,684.2	535.1	1,149.1	31.	Mineral	981.5		8.3	989.8
4.	Broadwater	831.1			831.1	231.1	600.0	32.	Missoula	1,781.9	268.1		1,513.8
5.	Carbon	1,002.1		7.4	1,009.5	451.6	557.9	33.	Musselshell	1,001.4			1,001.4
6.	Carter	899.9			899.9	395.6	504.3	34.	Park	1,057.3	40.9	15.9	1,032.3
7.	Cascade	2,059.3	304.0		1,755.3	627.3	1,128.0	35.	Petroleum	569.4			569.4
8.	Chouteau	2,458.7			2,458.7	755.0	1,703.7	36.	Phillips	1,694.6			1,694.6
9.	Custer	1,162.7	72.5		1,090.2	464.6	625.6	37.	Pondera	1,091.2			1,091.2
10.	Daniels	879.3			879.3	283.8	595.5	38.	Powder River-	1,062.0			1,062.0
11.	Dawson	1,205.1	40.9	5.8	1,170.0	449.9	720.1	39.	Powell	956.8		10.7	967.5
12.	Deer Lodge	333.8	28.2	10.5	316.1	149.9	166.2	40.	Prairie	789.0		3.0	792.0
13.	Fallon	923.0			923.0	326.8	596.2	41.	Ravalli	1,405.6			1,405.6
14.	Fergus	1,901.7	50.3		1,851.4	638.5	1,212.9	42.	Richland	1,389.5	37.3		1,352.2
15.	Flathead	2,124.5	91.0	11.5	2,045.0	680.1	1,364.9	43.	Roosevelt	1,589.4			1,589.4
16.	Gallatin	1,602.6	88.6		1,514.0	482.6	1,031.4	44.	Rosebud	1,603.4		5.5	1,608.9
17.	Garfield	1,284.7			1,284.7	532.4	752.3	45.	Sanders	1,633.7			1,633.7
18.	Glacier	1,026.6			1,026.6	482.3	544.3	46.	Sheridan	1,314.5			1,314.5
19.	Golden Valley	638.5			638.5	238.0	400.5	47.	Silver Bow	534.6	262.6	29.6	301.6
20.	Granite	674.3			674.3	227.6	446.7	48.	Stillwater	1,023.0			1,023.0
21.	Hill	2,324.0	54.2	6.5	2,276.3	687.9	1,588.4	49.	Sweet Grass	632.3		34.2	666.5
22.	Jefferson	772.0		29.0	801.0	345.0	456.0	50.	Teton	1,460.2		14.6	1,474.8
23.	Judith Basin -	1,078.7			1,078.7 ·	295.5	783.2	51.	Toole	1,288.9		21.4	1,310.3
24.	Lake —————	1,291.3			1,291.3	366.0	925.3	52.	Treasure	390.8			390.8
25.	Lewis & Clark	1,557.4	177.9		1,379.5	600.7	778.8	53.	Valley	2,065.3	35.9		2,029.4
26.	Liberty	955.5			955.5	298.4	657.1	54.	Wheatland	549.4			549.4
27.	Lincoln	1,987.8	51.4		1,936.4	621.6	1,314.8	55.	Wibaux	528.0			528.0
28.	McCone	1,412.5			1,412.5	443.2	969.3	56.	Yellowstone -	2,040.1	427.8	35.3	1,647.6
								тот	AL	69,639.8	2,058.6	349.6	67,930.8

Does not include Type "A" Primitive Roads.
 Miles within the 1990 U.1.F. Boundary.

1990

Classified Miles	Rural Local Road Miles
5	6=4-5
448.6	969.7
291.9	513.7
221.8	768.0
381.6	1,132.2
359.5	641.9
373.1	659.2
208.4	361.0
612.2	1,082.4
372.1	719.1
475.3	586.7
265.1	702.4
250.0	542.0
363.8	1,041.8
419.1	933.1
529.7	1,059.7
628.1	980.8
479.0	1,154.7
419.0	895.5
104.2	197.4
349.5	673.5
316.7	349.8
463.5	1,011.3
445.2	865.1
157.6	233.2
539.6	1,489.8
209.8	339.6
185.9	342.1
528.4	1,119.2
23,254.6	44,676.2

٠

/

						1	
		1968			199	90	
Urban Area	U.I.F. Area (Sq.Mi.)	Road Miles	Mi./Sq.Mi.	U.I.F. Area (Sq.Mi.)	Total Road Miles	Classified Miles	Local Street Miles
	1	2	3	4	5=4x3	6	7=5-6
1. Billings	27.74	320.70	11.56	54.35	628.29	183.50	444.79
2. Great Falls	24.45	277.30	11.34	37.23	422.19	118.80	303.39
3. Missoula	18.65	234.00	12.55	42.84	537.64	117.20	420.44
4. Butte	14.82	169.30	11.42	25.62	292.58	75.00	217.58
5. Helena	9.52	145.49	15.28	18.17	277.64	70.40	207.24
6. Bozeman	4.45	76.45	17.18	11.15	191.56	44.00	147.56
7. Kalispell	8.64	72.74	8.42	15.33	129.08	44.90	84.19
8. Havre	3.72	55.95	15.04	4.27	64.22	18.40	45.82
9. Miles City	4.58	63.86	13.94	4.76	72.50 ⁽¹⁾	19.30	53.20
10. Anaconda	3.42	29.91	8.75	4.24	37.10	14.40	22.70
ll. Libby	5.13	48.78	9.51	5.84	55.54	19.80	35.74
12. Livingston.	2.20	40.02	18.19	2.62	47.66	12.40	35.26
13. Lewistown	5.38	49.02	9.11	6.23	56.76	19.30	37.46
14. Glendive	2.45	27.39	11.18	3.93	43.94	14.10	29.84
15. Dillon	$1.17^{(2)}$	27.02 ⁽³⁾	23.09	1.73	39.95	8.60	31.35
16. Laurel	2.33	32.11	13.78	2.70	37.21	13.70	23.51
17. Glasgow	3.70	33.80	9.14	4.69	42.87	11.60	31.27
18. Sidney	1.28	24.20 ⁽³⁾	18.91	2.64 ⁽⁴⁾	49.92	13.70	36.22

DEVELOPMENT OF 1990 URBAN LOCAL STREET MILES

- (1) Projected miles from 1968 data were less than the measured 1972 existing miles. Therefore, 1972 existing miles were used for Miles City.
- (2) Does not include swamp area inside Urban-In-Fact (U.I.F.) boundary.
- (3) These figures are 1972 municipal miles since these areas were not urban in the 1968 Study.
- (4) Does not include public area on west side.

- 2	5 -		
TABLE	NO.	7	

UDAL MILEACE AND TRAVEL BY COM

					1	BRINCIPAL ART	EDIAL		MINOR APTERIAL		RURAL MILE	AGE AND TRAT	OR I	MIN	NOR COLLECT	08					TOT 11 0			
Couply				1972		1990	1972		990	- 1972		1990	1972	19	90	1972		LUCAL RUAD	1972		IOTAL S	STEM	1072	
county	Miles	%	DVM %	DVM %	Miles %	DVM %	DVM %	Miles %	DVM %	DVM %	Miles %	DVM %	DVM %	Miles %	DVM %	DVM %	Miles %	DVM %	DVM %	Miles %	DVM	% 1	DVM	%
1 Banutrhaad		3.6	133 905 51 0	88 344 53 6	0 0	0, (0.0	71.8 4.7	57.573 21.9	28.418 17.3	163.9 10.7	40,471 15.4	22,249 13.5	342.5 22.4	7,726 3.0	5.517 3.3	866.7 56.6	22 803 8 7	20 208 12 3	1530 2 2	2 267 478	15	64 776	
 Beaverneau ~ - Bia Ham 	70.0	5.0	133,705 51.0	162 020 46 4				631 4.3	97.254 15.2	47.237 13.5	238.9 16.4	192,600 30.1	66,139 19,0	200.1 13.8	21.710 3.4	15.786 4.5	8721 60.0	55 7 38 8 7	57.824 16.6		1 630 193	2.4	104,750	1.5
2. Big nom	19.0	3.3	0 40	0 0	54.1 3.2	144 411 56 7	84.853 51.0	879 49	33.865 13.2	19.898 11.9	136.8 8.1	21.193 8.2	12.611 7.6	261.0 15.5	18.901 7.4	10 542 6 3	1 1 4 9 1 6 8 3	38 764 15 0	38.616 23.2	1694.0 2	5 357 124	3.0 3	349,000	3.2
J. Branc			26 405 11 2	17.049 12.2	510 67	151 333 64 1	81 504 58 1	29.6 3.6	25 706 10.9	16 207 11 6	45.5 5.5	12 316 5.2	6.962 4.9	98.4 11.8	5 309 2 3	3 988 7 8	600.0 72.2	14 743 6 2	14 606 10 4	021.1	257,134	1.4	166,520	1.5
4. Broadwater	5.7	0,7	20,493 11.2	17,049 13.2	50.8 50	137 355 30 3	80,706 36.2	1174 116	136 171 39.0	80 552 36 2		19120 5.5	9,760 4.4	175 7 17 4	15 538 4 4	11.089 5.0	557.9 55.3	41 084 11 8	40.617 19.2	001.1	5 240 268	1.3	140,316	1.3
5. Carbon	0		0 0	0 0	30.8 3.0	137,333 39.3	0.700 30.2	177.9 17.0	71 226 74 0	36 108 65 9	1125 125	7.036 7.4	4.454 81	160.9 17.9	5790 61	2 050 5 6	504.3 56.0	41,004 11.8	40,017 18.2	1,009.5	.5 349,268	1.9	222,724	2.0
6. Carter	0	0					120 204 20 2	54.0 2.1	53 500 9.0	31,441 7.2	160.6 0.1	60.449 0.0	20,250 0.2	289.7 16.5	5,760 0.1	3,039 5.0	1 1 28 0 64 2	11,000 11.0	11,205 20.4	899.9	.3 95,060	0.5	54,826	0.5
7. Cascade	55.3	3.2	246,910 36.9	146,797 34.3	67.3 3.8	250,388 38.3	129,304 30.2	34.9 3.1	33,309 8.0	18 350 10.0	200.1 9.1	30,344 11.0	39,339 9.2	401.1 16.3	14,430 2.1	17,425 4.1	1,128.0 04.3	36,190 3.7	03,820 14.9	1,755.3 2	.6 669,904	3.7	428,152	3.9
8. Chouteau	0	0	0 0	0 0	/3.1 3.0	144,847 50.9	85,107 49,4	71.7 2.7	52,617 22.2	25 291 21 4	209.1 8.5	14 161 6 0	0.874 6.0	401.1 10.3	11,712 4.0	10,160 5.9	635.6 57.4	30,700 14.4	37,215 21.0	2,458.7 3	.6 254,696	1.4	172,337	1.6
9. Custer	42.8	3.9	122,995 52.2	81,488 49.5	45.4 4.2	28,947 12.3	20,164 12.3	70.8 0.3	30,007 22.7	33,261 21.4	149.3 13.7	7.51 11.0	9,874 0.0	136.3 14.3	8,084 3.4	3,824 2.3	625.6 57.4	7,925 3.4	14,006 8.5	1,090.2	.6 235,729	1.3	164,637	1.5
10. Daniels	0	0	0 0	0 0	0 0			81.7 9.3	39,082 30.8	24,153 40.7	42.1 4.8	7,331 11.0	4,923 9.5	18.2	3,314 7.7	4,861 9.4	395.3 67.7	16,905 24.5	17,807 34.4	879.3	.3 68,852	0.4	51,744	0.5
II. Dawson	43.7	3.7	140,960 48.7	82,064 43.9	35.4 3.0	38,026 13.1	22,346 12.0	47.0 4.1	50,607 17.5	27,034 14.8	129.2 11.1	25,098 8.7	17,730 9.5	194.0 16.6	8,889 3.1	7,975 4.2	720.1 01.6	25,948 9.0	29,212 15.6	1,170.0	.7 289,528	1.6	186,987	1.7
12. Deer Lodge	14.3	4.5	86,485 37.9	47,575 33.0	0 0		0 0	57.0 18.2	65,104 28.5	38,323 20.5	33.3 10.5	36,464 10.0	15,185 10.5	44.7 14.2	10,738 4.7	9,286 6.4	166.2 52.6	29,422 12.9	34,014 23.6	316.I C	.5 228,213	1.3	144,383	1.3
13. Fallon	0	0	0 0	0 0	43.8 4.7	43,679 35.5	30,583 35.0	42.6 4.6	38,040 30.9	20,488 23.4	93.8 10.2	9,892 8.0	6,865 7.8	146.6 15.9	9,174 7.4	6,336 7.3	596.2 64.6	22,410 18.2	23,210 26.5	923.0 1	.4 123,195	0.7	87,482	0.8
14. Fergus	0	0	0 0	0 0	70.8 3.8	101,914 37.9	59,880 33.9	150.2 8.1	96,334 35.8	55,531 31.4	140.7 7.6	27,023 10.1	18,027 10.2	276.8 15.0	13,549 5.0	9,286 5.3	1,212.9 65.5	30,076 11.2	34.014 19.2	1,851.4 2	.7 268,896	1.5	176,738	1.6
15. Flathead	0	0	0 0	0 0	127.2 6.2	381,318 32.1	205,440 30.8	124.5 6.1	427,779 36.1	208,608 31.2	137.9 6.7	137,642 11.6	67,395 10.1	290.5 14.2	73,056 6.2	39,875 6.0	1,364.9 66.8	165,910 14.0	146,060 21.9	2,045.0 3	.0 1,185,705	6.6	667,378	6.1
16. Gallatin	40.5	2.7	312,690 31.6	164,052 32.3	98.6 6.5	323,146 32.7	132,673 26.1	80.8 5.3	104,826 10.6	47,494 9.4	127.7 8.4	104,149 10.5	58,408 11.5	135.0 8.9	52,491 5.3	22,560 4.4	1,031.4 68.1	92,390 9.3	82,634 16.3	1,514.0 2	.2 989,692	5.5	507,821	4.7
17. Garfield	0	0	0 0	0 0	89.3 6.9	46,432 52.1	27,286 47.3	46.9 3.7	16,014 18.0	9,416 16.3	159.9 12.4	12,522 14.1	7,715 13.4	236.3 18.4	3,653 4.1	2,840 4.9	752.3 58.6	10,419 11.7	10,404 18.1	1,284.7	.9 89,040	0.5	57,661	0.5
18. Glacier	0	0	0 0	0 0	66.5 6.5	166,649 33.0	90,478 29.8	101.0 9.8	171,667 34.0	89,337 29.4	152.5 14.9	73,518 14.6	44,494 14.7	162.3 15.8	31,473 6.2	16,933 5.6	544.3 53.0	61,332 12.2	62,026 20.5	1,026.6 1	.5 504,639	2.8	303,268	2.8
19. Golden Valley	0	0	0 0	0 0	36.0 5.6	53,001 79.2	32,919 73.3	5.6 0.9	2,430 3.6	1,557 3.5	53.4 8.4	5,034 7.5	3,553 7.9	143.0 22.4	1,545 2.3	1.475 3.3	400.5 62.7	4,914 7.4	5,402 12.0	638.5 0	.9 66,924	0.4	44,906	0.4
20. Granite	28.7	4.3	140,440 55.7	89,383 61.2	0 0	0 0	0 0	36.1 5.3	31,303 12.4	18,395 12.6	108.5 16.1	46,940 18.6	18,411 12.6	54.3 8.0	6,724 2.7	4,261 2.9	446.7 66.3	26,708 10.6	15,606 10.7	674.3 1	.0 252,115	1.4	146,056	1.3
21. Hill	0	0	0 0	0 0	76.9 3.4	209,421 69.4	116,417 59.1	42.4 1.8	12,957 4.3	9,152 4.6	227.4 10.0	45,186 15.0	29,426 14.9	341.2 15.0	8,515 2.8	9,013 4.6	1,588.4 69.8	25,751 8.5	33,014 16.8	2,276.3 3	.4 301,830	1.7	197,022	1.8
22. Jefferson	95.4	11.9	308,790 65.8	189,015 67.1	1.5 0.2	6,192 1.3	3,335 1.2	76.8 9.6	77,657 16.6	38,926 13.8	59.3 7.4	20,339 4.3	12,290 4.4	112.0 14.0	15,736 3.4	8,194 2.9	456.0 56.9	40,495 8.6	30,012 10.6	801.0	.2 469,209	2.6	281,772	2.6
23. Judilh Basin -	0	0	0 0	0 0	61.3 5.7	125,069 76.5	73,486 70.3	16.4 1.5	6,252 3.8	3,674 3.5	86.0 8.0	11,539 7.1	7,717 7.4	131,8 12.2	5,288 3.2	4,206 4.0	783.2 72.6	15,333 9.4	15,406 14.8	1,078.7 1	.6 163,481	0.9	104,489	1.0
24. Lake	0	0	0 0	0 0	78.2 6.1	371,329 55.8	200,020 51.4	71.1 5.5	122,059 18.3	62,940 16.2	59.0 4.6	32,602 4.9	20,554 5.3	157.7 12.2	41,517 6.2	22,669 5.8	925.3 71.6	98,777 14.8	83,034 21.3	1,291.3 1	.9 666,284	3.7	389,217	3.6
25. Lewis & Clark	43.4	3.1	129,885 25.9	87,627 27.7	70.9 5.1	207,617 41.3	101,409 32.0	43.3 3.1	25,469 5.1	13,720 4.3	145.5 10.6	75,694 15.1	43,430 13.7	297.6 21.6	24,560 4.9	15,185 4.8	778.8 56.5	38,922 7.7	55,623 17.5	1,379.5 2	.0 502,147	2.8	316,994	2.9
26. Liberty	0	0	0 0	0 0	25.6 2.7	44,347 53.4	23,883 47.3	27.3 2.9	10,262 12.3	5,526 10.9	84.5 8.8	5,386 6.5	3,766 7.5	161.0 16.8	9,303 11.2	3,714 7.4	657.1 68.8	13,760 16.6	13,606 26.9	955.5 1	.4 83,058	0.5	50,495	0.5
27. Lincoln	0	0	0 0	0 0	73.4 3.8	165,463 32.1	89,102 29.8	118.8 6.1	155,606 30.2	85,055 28.4	172.6 8.9	56,716 11.0	40,166 13.4	256.8 13.3	36,179 7.0	18,244 6.1	1,314.8 67.9	101,236 19.7	66,828 22.3	1,936.4 2	.9 515,200	2.9	299,395	2.8
28. McCone	0	0	0 0	0 0	87.7 6.2	80,539 63.4	47,334 57.9	72.5 5.1	16,183 12.7	9,533 11.7	59.3 4.2	5,469 4.3	3,637 4.5	223.7 15.9	9,572 7.5	4,534 5.6	969.3 68.6	15,333 12.1	16,607 20.3	1,412.5 2	.1 127,096	0.7	81,645	0.8
29. Madison	7.4	0.5	11,100 4.1	5,232 3.3	0 0	0 0	0 0	191.3 13.5	210,496 77.4	113.690 72.7	11.1 0.8	1,278 0.5	878 0.6	238.8 16.8	19,943 7.3	7,866 5.0	969.7 68.4	29,093 10.7	28,812 18.4	1,418.3 2	.1 271,910	1.5	156,478	1.4
30. Meagher	0	0	0 0	0 0	0 0	0 0	0 0	101.9 12.6	64,367 72.2	39,901 64.6	52.9 6.6	9,000 10.1	6,301 10.2	137.1 17.0	3,769 4.2	3,332 5.4	513.7 63.8	11,991 13.5	12,205 19.8	805.6 1	.2 89,127	0.5	61,739	0.6
31. Mineral	76.8	7.8	316,145 84.6	190,494 83.5	0 0	0 0	0 0	7.7 0.8	4,935 1.3	2,667 1.2	47.7 4.8	26,382 7.1	13,228 5.8	89.6 9.0	8,124 2.2	4,643 2.0	768.0 77.6	18,085 4.8	17,007 7.5	989.8 1	.5 373,671	2.1	228,039	2.1
32. Missoula	46.9	3.1	308,065 33.9	181,172 33.0	95.2 6.3	378,830 41.6	181,588 33.0	55.4 3.7	95,515 10.5	46,682 8.5	63.8 4.2	36,714 4.0	18,954 3.5	120.3 7.9	25,291 2.8	25,946 4.7	1,132.2 74.8	65,066 7.2	95,039 17.3	1,513.8	.2 909,481	5.1	549,381	5.1
33. Musselshell	0	0	0 0	0 0	0 0	0 0	0 0	101.4 10.1	122,991 77.9	24,917 45.8	52.7 5.3	3,712 2.4	2,270 4.2	205.4 20.5	9,349 5.9	5,845 10.7	641.9 64.1	21,820 13.8	21,409 39.3	1,001.4 1	.5 157,872	0.9	54,441	0.5
34. Park	32.0	3.1	175,345 46.9	102,810 45.5	0 0	0 0	0 0	112.8 10.9	147,212 39.4	82,167 36.4	89.2 8.6	16,435 4.4	10,771 4.8	139.1 13.5	12,794 3.4	6,446 2.8	659.2 63.9	21,820 5.9	23,610 10.5	1,032.3 1	.5 373,606	2.1	225,804	2.1
35. Petroleum	0	0	0 0	0 0	35.0 6.2	18,599 51.0	10,930 45.8	27.8 4.9	10,572 29.0	6,652 27.9	64.5 11.3	2,099 5.8	1,428 6.0	81.1 14.2	1,236 3.4	1,038 4.4	361.0 63.4	3,932 10.8	3,802 15.9	569.4 0	.8 36,438	0.2	23,850	0.2
36. Phillips	0	0	0 0	0 0	55.1 3.3	108,666 51.0	63,850 46.1	134.3 7.9	52,028 24.4	29,822 21.5	53.3 3.1	9,675 4.5	5,405 3.9	369.5 21.8	12,766 6.0	8,467 6.1	1,082.4 63.9	30,076 14.1	31,013 22.4	1,694.6	.5 213,211	1.2	138,557	1.3
37. Pondera	30.6	2.8	105,505 41.3	53,676 33.4	0 0	0 0	0 0	49.4 4.5	46,633 18.3	27,416 17.1	137.8 12.6	48,559 19.0	31.018 19.3	154.3 14.2	15.267 6.0	10.378 6.5	719.1 65.9	39,315 15.4	38,015 23.7	1,091.2	.6 255,279	1.4	160,503	1.5
38. Powder River-	0	0	0 0	0 0	0 0	0 0	0 0	119.7 11.3	106,550 74.7	56,523 67,1	114.6 10.8	11.078 7.8	6.838 8.1	241.0 22.7	6.846 4.8	4.479 5.3	586.7 55.2	18,085 12.7	16,407 19.5	1,062.0	.6 142,559	0.8	84,247	0.8
39. Powell	34.2	3.5	191,595 46.1	110,288 44.7	57.4 6.0	140,171 33.8	69,306 28.1	32.6 3.4	12,565 3.0	7,367 3.0	21.8 2.3	18.101 4.4	10.993 4.5	119 1 12 3	14 806 3.6	10.433 4.2	702.4 72.5	37,742 9.1	38,216 15.5	967.5 1	.4 414,980	2.3	246,603	2.3
40. Prairie	27.8	3.5	89,100 77.0	53,998 73.7	0 0	0 0	0 0	36.9 4.7	3,945 3.4	2,747 3.8	55.9 7.0	5.471 4.7	3,818 5.2	129.4 16.3	3 090 2.7	2.731 3.7	542.0 68.5	14,098 12.2	10,004 13.6	792.0	.2 115,704	0.6	73,298	0.7
41. Ravalli	0	0	0 0	0 0	76.8 5.5	321,397 55.5	145,208 48.9	0.1 0.0	40 0.0	20 0.0	86.4 6.1	79.030 13.7	46.378 15.6	200.5 14.3	61.367 10.6	22.614 7.6	1,041.8 74.1	117,191 20.2	82,834 27.9	1,405.6 2	.1 579,025	3.2	297,054	2.7
42. Richland	0	. 0	0 0	0 0	0 0	0 0	0 0	117.3 8.7	170.336 75.4	93,853 66.0	154.8 11.4	19 565 8 7	10,610 7.5	147.0 10.9	8 5 8 9 3 8	8 084 5 7	933.1 69.0	27,324 12.1	29,612 20.8	1,352.2	.0 225,814	1.3	142,159	1.3
43. Rooseveli	0	0	0 0	0 0	92.4 5 .8	159,412 50.8	100,288 45.2	55.2 3.5	41,776 13.3	24.547 11.1	178 1 11 2	30.740 9.8	20.983 9.5	2010 12.8	22 645 7 2	16 278 7 3	1,059,7 66.7	59,169 18.9	59,625 26.9	1,589.4	.3 313,742	1.7	221,721	2.0
44. Rosebud	41.8	2.6	153,180 30.8	92,628 39.8	0 0	0 0	0 0	158.9 9.9	239.607 48.3	82,784 35.6	1516 94	52 822 10.6	13.041 5.6	275 8 17 1	12,045 7.2	9450 41	980.8 61.0	38.219 7.7	34.614 14.9	1.608.9	4 496,528	2.8	232,517	2.1
45. Sanders	0	0	0 0	0 0	0 0	0 0	0 0	176.3 10.8	216.393 73.5	117 282 65.4	79.0 4.8	18359 6.2	10.123 5.6	273.8 17.1	14 274 4 9	11 143 6 2	1.154.7 70.7	45,409 15,4	40.817 22.8	1.633.7	4 294,435	1.6	179,365	1.7
46. Sheridan	0	0	0 0	0 0	0 0	0 0	0 0	112.6 8.6	95 918 62 5	56 868 53 7	895 68	10,733 7.0	6 674 6 3	225.7 15.7	12.010 01	9.067 8.6	895.5 68.1	32.828 21.4	33.214 31.4	1.314.5 1	.9 153.379	0.9	105,823	1.0
47. Silver Bow	42.8	14.2	178,230 80.3	107,655 64.0	0 0	0 0	0 0	121 4.0	9885 4.5	5 780 3.4	32.5 7.8	0.074 4.0	5,705 2,5	210.7 10.5	7 227 2 2	10,499 6.2	1974 655	17 495 7 9	38.416 22.9	301.6 0	4 221.863	1.2	168.134	1.5
48. Stillwater	38.3	3.7	204,785 68.0	129,582 65.6	0 0	0 0		22.0 2.2	32,664 10.9	10,122 0.7	120.6 11.8		5,795 3.5	23.8 8.5	1,311 3.3	7.266 2.7	673.5 65.9	79 049 97	26.611 13.5	1023.0	5 301.072	17	197.345	1.8
49. Sweet Grass -	37.1	5.6	176,710 67.4	108,062 66.9	0 0	0 0	0 0	315 47	28 447 10.0	16.252 10.1	01.7 12.7	21,337 7.2	14,755 7,5	107.7 16.4	13,037 4.3	1,203 3.7	349.9 57.5	17 495 6 7	17 207 10 7	666.5	0 262,006	1.5	61.587	1.5
50. Teton	21.4	1.5	67,140 29.1	48,852 29.7	0 0	0 0		69.5 4.7	20,447 10.9	10,353 10.1	91.7 13.7	28,361 10.8	15,267 9.4	156.4 23.5	10,993 4.2	4.698 2.9	1011.2 (9)	35.590 15.4	35.215 21.1	1474.9	2 230.958	13	64.611	1.5
51. Toole	43.8	3.3	89,370 35.2	48,029 30.6	43.8 3.2	93 324 36 7	50.256 22.0	07.5 4.7	01,425 35.3	47,041 28.6	137.9 9.3	35,629 15.4	23,889 14.5	234.7 15.9	11,184 4.8	9,614 5.8	9651 68.0	23 419 12 3	23.614 21.4	1310.2	0 253.020		57.032	14
52. Treasure	26.2	6.7	78,980 78.3	51,829 79 3	0 0	0 0	0 0	0 0	0 0	0 0	138.0 10.5	23,436 9.2	15,956 10.2	219.6 16.8	14,380 5.7	9,177 5.8	322.3 60.7	6 197 6 1	6 202 0.5	300.8	6 100 792	0.6	65 309	0.6
53. Valley	0	0	0 0	0 0	77 5 2 4	153 705 63.0	0 265 450	1057	0 0	0 0	40.6 10.4	8,922 8.9	5,584 8.6	90.8 23.2	6,404 6.4	1.693 2.6	233.2 59.7	26.760 12	20.203 9.5	3030.0	0 201 151	1.6	96.937	1.8
54. Wheatfand	0	0	0 0	0 0	405 74	51 (34) 40 (21,002,45.9	105.7 5.2	71,395 24.5	47,734 24.2	95.8 4.7	15,280 5.3	9,425 4.8	260.6 12.9	13,921 4.8	10,597 5.4	1,489.8 73.4	36,760 12.6	38,816 19.7	540.4 3	0 291,151 N 106,339	0.6	71 710	0.7
55. Wibaux	15.3	2.9	53,495 56.5	27 596 49 6	40.3 7.4	51,024 48.6	31,882 44.4	39.2 7.1	30,777 29.0	19,256 26.8	36.1 6.6	3.012 2.8	1,987 2.8	94.0 17.1	7,055 6.6	3,988 5.6	3396 61.8	13,760 13.0	14,606 20.4	544.4 0	N 04.650	0.0	55.682	0.5
56 Yellowstone	81.2	4.9	366 390 47 1	138 760 47 5	204 24	0 0		25.8 4.9	23,118 24.4	12,475 22.4	64.0 12.1	7,683 8.1	4,915 8.8	80.8 15.3	2,697 2.9	2,294 4.1	342.1 64.8	/,000 8.1	8,403 15.1	16170 0	1 277 (00)	1.2	01 200	3.6
			300,370 47.1		-9.4 [.8	.04.969 8.4	.38,1/4 7.6	26.3 1.6	<u>39,266</u> <u>5.0</u>	22,785 4.5		160,829 20.7	84,497 16.8	230.8 140	76.947 9.9	25,345 5.1	1,119.2 67.9	- 69,297 8.9	92.838 18.5	<u>1.0476</u> • _ <u>2</u>	** <u>**********************************</u>	-4.3 -3	8	
totals	1,138.5	1.7 4	4,487.070 25.0	2,706,077 24.8	1,989 1 2 9	4,718,210 26.3	2,520,076 23.2	3,852.2 5.7	3,988,451 22.2	2,089,835 19.2	5,810.5 8.5	1,849,762 10.3	1,017,992 9.4	10,464.3 15.4	907,255 5.1	546,236 5.0	44,676.2 65.8	2,000,826 1.1	2,000,826 18.4	67,930.8 100	0 17,951,574	100.0 10.8	81.042	00.0
						· · · · · · · · · · · · · · · · · · ·															<u> </u>			

DVM = Daily Vehicle Miles of Travel.

* Does not include Type A (Primitive) Road Miles or Travel.

URBAN MILEAGE AND TRAVEL

-

.

			INTE	RSTAT	E			P	RINCIPAL	ARTE	RIAL				MINOR AF	TERIA	L			CC	DLLECTOR	R STRI	EETS				LOCAL ST	REETS					TOTAL S	YSTEM		
		1	990		1973	2		1	990		1972			<u> </u>	990		1972			1	990		1972			19	90]	1972			19	90		1972	2
	Miles	%	DVM	%	DVM	%	Miles	%	DVM	%	DVM	%	Miles	. %	DVM	%	DVM	%	Miles	%	DVM	%	DVM	%	Miles	%	DVM	%	DVM	%	Miles	%	DVM	%	DVM	%
Urbanized Areas																	:								1											
1. Billings	13.0	2.1	88,880	5.1	67,148	6.5	52.4	8.3	705,248	40.7	369,684	35.8	54.1	8.6	408,096	23.5	151,678	14.7	64.0	10.2	145,254	8.4	77,431	7.5	444.8	70.8	386,852	22.3	367,475	35.5	628.3	20.8	1,734330	24.7	1,033,416	22.5
2. Great Falls	6.4	1.5	58,150	4.5	31,499	3.6	29.8	7.0	401,714	30.9	244,918	28.4	46.4	11.0	311,427	24.0	112,078	13.0	36.2	8.6	148,694	11.5	82,651	9.6	303.4	71.9	378,314	29.1	392,249	45.4	422.2	13.9	1,298,299	18.5	863,395	18.8
3. Missoula	7.6	1.4	84,050	7.5	38,089	6.1	24.4	4.6	366,526	32.9	191,459	30.5	41.0	7.6	209,101	18.8	116,963	18.7	44.2	8,2	161,020	14.4	48,772	7.8	420.4	78.2	293,966	26.4	231,466	36.9	537.6	17.8	1,114,663	15.9	626,749	13.7
Small Urban 25,000-49,999																																				
4. Butte	12.7	4.3	83,450	16.0	55,925	12.8	10.5	3.6	96,193	18,4	73,887	16.9	25.8	8.8	119,387	22.9	70,679	16.2	26.0	8.9	69,798	13.4	41,255	9.4	217.6	74.4	153,209	29.3	195,791	44.7	292.6	9.7	522,037	7.4	437,537	9.5
5. Helena	6.6	2.4	30,560	5.8	18,419	5.7	15.7	5.7	168,048	31.7	90,399	28.1	24.4	8.8	129,212	24.4	54,251	16.9	23.7	8.5	55,978	10.6	27,589	8.6	207.2	74.6	145,549	27.5	130,933	40.7	277.6	9.2	529,347	7.6	321,571	7.0
6. Bozeman	3.2	1.7	17,345	4.9	8,915	4.2	7.5	3.9	93,755	26.4	50,467	23.5	17.7	9.2	65,389	18.5	33,233	15.5	15.6	8.1	54,193	15.3	21,204	9.9	147.6	77.1	123,785	34.9	100,630	46.9	191.6	6.3	354,467	5.0	214,449	4.7
7. Kalispell	0	0	0	0	0	0	10.9	8.4	157,936	43.4	84,414	38.9	19.1	14.8	73,065	20.1	38,302	17.6	14.9	11.5	35,954	9,9	16,425	7.6	84.2 6	55.3	97,102	26.6	77,949	35.9	129.1	4.3	364,057	5.2	217,090	4.7
Small Urban 10,000-24,999																				ł																
8. Havre	0	0	0	0	0	0	4.5	7.0	53,212	31.4	28,702	21.8	6.9	10.7	44,885	26.5	24,806	18.9	7.0	10.9	19,415	11.5	13,561	10.3	45.8	71.4	51,708	30.6	64,358	49.0	64.2	2.1	169,220	2.4	131,427	2.9
9. Miles City	0	0	0	0	0	0	6.0	8.3	43,364	35.8	24,294	24.1	6.1	8.4	19,856	16.4	11,096	11.0	7.2	9.9	15,820	13.0	11,375	11.3	53.2	73.4	42,133	34.8	53,983	53.6	72.5	2.4	121,173	1.7	100,748	2.2
10. Anaconda	0	0	0	0	0	0	7.3	19.7	66,357	48.4	39,044	35.2	3.2	8.6	12,904	9.4	6,435	5.8	3.9	10.5	15,820	11.5	11,363	10.3	22.7 6	61.2	42,133	30.7	53,927	48.7	37.1	1.2	137,214	2.0	110,769	2.4
Small Urban 5,000-9,999																																		•		
11. Libby	0	0	0	0	0	0	9.0	16.2	68,022	53.8	42,472	47.3	4.6	8.3	6,234	4.9	3,997	4.5	6.2	11.2	14,331	11.3	7,540	8.4	35.7	64.3	37,918	30.0	35,784	39.8	55.5	1.8	126,505	1.8	89,793	2.0
12. Livingston	0.5	1.0	2,275	2.7	1.279	1.8	3.1	6.5	29.485	34.8	17,320	23.7	3.8	8.0	11,317	13.4	6,648	9.1	5.0	10.5	11,362	13.4	8.300	11.4	35.3	74.0	30,259	35.7	39,391	54.0	47,7	1.6	84,698	1.2	72,938	1.6
13. Lewistown	0	0	0	0	0	0	5.4	9.5	36,200	39.1	19,489	26.3	5.6	9.9	16,420	17.7	9,645	13.0	8.3	14.6	10,930	11.8	7,832	10.6	37.5	66.0	29,110	31.4	37,172	50.1	56.8	1.9	92,660	1.3	74,138	1.6
14. Glendive	1.0	2.3	3,640	3.3	1.968	2.4	5.1	11.6	53,379	48.6	29.113	35.2	3.3	7.5	17,202	15.7	10,105	12.2	4.7	10.7	9,707	8.8	7,236	8.7	29.8	67.9	25,853	23.6	34,343	41.5	43.9	1.5	109,781	1.6	82,765	1.8
15. Dillon	0	0	0	0	0	0	2.7	6.8	22,339	38.0	13,990	29.3	2.5	6.3	4,102	7.0	2,541	5.3	3.4	8.5	8,844	15.0	5,448	11.4	31.3	78.4	23,555	40.0	25,853	54.0	39.9	1.3	58,840	0.8	47,832	1.0
16. Laurel	0.7	1.9	4,410	6.2	2,856	5.0	0.7	1.9	5,383	7.5	3,162	5.5	5.9	15.8	30,296	42.2	17,797	31.0	6.4	17.2	8,629	12.0	5,845	10.2	23.5 6	63.2	22,982	32.1	27,740	48.3	37.2	1.2	71,700	1.0	57,400	1.3
17. Glasgow	0	0	0	0	0	0	3.3	7.7	24,847	38.7	14.487	27.7	5.1	11.9	10,944	17.0	6,182	11.8	3.2	7.4	7,766	12.1	5,518	10.5	31.3	73.0	20,684	32.2	26,188	50.0	42.9	1.4	64,241	0.9	52,375	1.1
18. Sidney	0	_0	0	0	0	0	3.8	7.6	25,948	39.3	15,222	27.9	_4.0	8.0	13,205	20.0	7,756	14.2	5.9	11.8	7,335	<u>11.1</u>	5,494	<u>10.1</u>	36.2	72.6	19,535	29.6	26,076	47.8	49.9	1.6	66,023	1.0	54.548	1.2
Totals	51.7	1.7	372.760	5.3	226.098	4.9	202.1	6.7	2,417,956	34.5	1,352,503	29.5	279.5	9.2	1,503,042	21.4	684,192	14.9	285.8	9.4	800,850	11.4	404,839	8.8	2,207.5	73.0	1,924.647	27.4	1,921,308	41.9	3,026.6	100.0	7,019,255	100.0	4,588,940	100.0

DVM = Daily Vehicle Miles of Travel

- 26 -

5

MILEAGE AND TRAVEL SUMMARY

*

Functional System	1990 Miles	1972 DVM	1972 Avg. ADT	1990 DVM	1990 Avg. ADT	% Increase in DVM 1972–1990
Rural						
Interstate	1,138.5	2,706,077	2,377	4,487,070	3,941	65.81%
Principal Arterials -	1,989.1	2,520,076	1,267	4,718,210	2,372	87.22%
Minor Arterials	3,852.2	2,089,835	543	3,988,451	1,035	90.92%
Major Collectors	5,810.5	1,017,992	175	1,849,762	318	81.70%
Minor Collectors	10,464.3	546,236	52	907,255	87	66.09%
Local Roads	44,676.2	2,000,826	45	2,000,826	45	1.78%
Total Rural	67,930.8	10,881,042	160	17,951,574	264	64.98%
Urban						
Interstate	51.7	226,098	4,373	372,760	7,210	64.87%
Principal Arterials -	202.1	1,352,503	6,686	2,417,956	11,952	78.78%
Minor Arterials	279.5	684,192	2,451	1,503,042	5,383	119.68%
Collectors	285.8	404,839	1,420	800,850	2,810	97.82%
Local Streets	2,207.5	1,921,308	870	1,924,647	872	0.17%
Total Urban —	3,026.6	4,588,940	1,516	7,019,255	2,319	52.96%
Total State	70,957.4	15,469,982	218	24,970,829	352	61.41%

1990 RURAL DATA SUMMARY

		1_61			0	- 28 -	10	~		5
	A S	DVM (x1000			10	212	44(618	1,96(3,252
	NF	Miles			2.4	65.9	1,988.3	9,290.4	44,546.6	55,893.6
	S	DVM (x1000)			50	813	1,105	244	10	2,222
	FA	Miles			32.5	1,103.6	3,492.9	1,127.0	36.6	5,792.6
	AP	DVM (x1000)			4,658	2,963	299	45	25	7,990
	F/	Miles			1,954.2	2,682.7	329.3	46.9	93.0	5,106.1
		Cum.% of Total		25.0	51.3	73.5	83.8	46.9	100.0	Ι
		% of Total		25.0	26.3	22.2	10.3	5.1	11.1	100.0
	AL	DVM (x1000)		4,487	4,718	3,988	1,850	907	2,001	17,951
	TOT/	Cum.% of Total		1.7	4.6	10.3	18.8	34.2	100.0	I
		% of Total		1.7	2.9	5.7	8.5	15.4	65.8	100.0
		Miles		1,138.5	1,989.1	3,852.2	5,810.5	10,464.3	44,676.2	67,930.8
		Functional Classification	rincipal Arterial System	Interstate	Other Principal Arterials -	dinor Arterial System	Collector System Major Collectors	Minor Collectors	Local Road System	Rural Total

:

•

DVM (x1000) 192 145 27 387 751 NFA Miles 4.4 32.3 64.0 444.8 545.5 DVM (x1000) 99 177 111 0 0 FAS Miles 11.4 8.5 19.9 0 0 DVM (x1000) 150 567 717 0 0 FAP Miles 36.6 49.9 13.3 0 0 of Total Cum.% 100.0 5.1 45.7 69.3 7.77 I 23.6 8.4 100.0 40.6 22.3 % of Total 5.1 Cum.% DVM of Total (x1000) 145 408 387 1,734 89 705 TOTAL 19.0 29.2 100.010.4 2.1 ł % of Total 8.3 8.6 10.2 70.8 100.0 2.1 628.3 13.0 64.0 52.4 54.1 444.8 Miles ĺ Other Principal Arterials Functional Classification Principal Arterial System Minor Arterial System Local Street System Collector System Interstate -Urban Total

URBANIZED AREA DATA SUMMARY – BILLINGS

- 29 -

/

URBANIZED AREA DATA SUMMARY - GREAT FALLS

			TOT	TAL			H	AP		AS	4	VFA
Functional Classification	Miles	% of Total	Cum.% of Total	DVM (x1000)	% of Total	Cum.% of Total	Miles	DVM (x1000)	Miles	DVM (x1000)	Miles	DVM (x1000)
Principal Arterial System												
Interstate	6.4	1.5	1.5	58	4.5	4.5						
Other Principal Arterials	29.8	7.1	8.6	402	31.0	35.5	29.8	402	0	0	0	0
Minor Arterial System	46.4	11.0	19.6	311	24.0	59.5	23.7	194	6.1	38	16.6	79
Collector System	36.2	8.6	28.2	149	11.5	71.0	0	0	3.0	8	33.2	141
Local Street System	303.4	71.8	100.0	378	29.0	100.0	0	0	1.3	3	302.1	375
				•								
Urban Total	422.2	100.0	I	1,298	100.0	I	53.5	596	10.4	49	351.9	595

•

DVM (x1000) 110 293 490 87 0 NFA Miles 19.5 40.3 420.1 479.9 0 DVM (x1000) 99 116 --51 267 FAS Miles 7.6 21.2 3.9 0.3 33.0 (x1000) DVM 267 9 273 0 0 FAP Miles 0.3 16.8 17.1 0 0 of Total Cum.% 7.5 40.3 93.6 100.0 59.1 1 7.5 18.8 14.5 % of Total 32.8 26.4 100.0 DVM (x1000) 366 209 294 1,114 84 161 TOTAL Cum.% of Total 5.9 13.5 21.7 100.0 1.4 I 4.5 7.6 8.2 % of Total 78.3 100.0 4. 537.6 7.6 24.4 41.0 44.2 420.4 Miles Other Principal Arterials -Functional Classification Principal Arterial System Minor Arterial System Local Street System Collector System Interstate -Urban Total

URBANIZED AREA DATA SUMMARY – MISSOULA

6

URBAN AREA DATA SUMMARY - SMALL URBAN 5,000 - 50,000

		TOT	AL			FA	Ρ	FA	AS	NF	A
Miles	% of Total	Cum.% of Total	DVM (x1000)	% of Total	Cum.% of Total	Miles	DVM (x1000)	Miles	DVM (x1000)	Miles	DVM (x1000)
24.7	1.7	1.7	142	4.9	4.9						
95.5	9.9	8.3	944	32.9	37.8	84.7	006	6.5	25	4.3	19
138.0	9.6	17.9	574	20.0	57.8	18.9	129	34.7	154	84.4	291
141.4	9.8	27.7	346	12.1	6.9.9	3.1		4.0	15	134.3	324
1,038.9	72.3	100.0	865	30.1	100.0	1.3	1	0.7		1,036.9	863
1,438.5	100.0	I	2,871	100.0	I	108.0	1,037	45.9	195	1,259.9	1,497
 And and a second s											

- 32 -

•

PART III

NEEDS ANALYSIS

PART III – NEEDS ANALYSIS

A. DESCRIPTION OF NEEDS ANALYSIS PROCEDURE

Needs to construct the functionally classified highway system to an adequate standard are estimated by following a logic process procedure. The logic process used in identifying deficient sections is as follows:

- (1) Identify and describe study sections.
- Set up criteria for measuring the adequacy of a facility (defined as minimum tolerable conditions).
- (3) Compare the existing conditions with the minimum tolerable conditions.
- (4) Identify the deficient sections and the type of deficiency.

Required improvements (i.e., new location, reconstruction, resurfacing, widening, etc.) are based upon the type of deficiency and the proposed standard of the improved road. Cost estimates for the required improvement were made by using construction costs data obtained from the Department of Highways.

To facilitate the needs analysis procedure, each route was divided into logical study sections. For the routes on federal-aid primary, the study sections corresponded to the sections shown in the Department of Highways *Sufficiency Rating* publication. For routes not on the primary system, the sections were divided into lengths that would correspond to a logical construction section. A worksheet was prepared for each study section, deficiency analysis conducted, improvement type determined, and estimated costs to construct the improvement applied.

B. ROUTE NUMBERING SYSTEM

(1) General

In order to provide a more precise system of identifying each section of road in the state, the decision was made to develop a new numbering system for urban and rural highways. The new system provides a unique number for each section and identifies its functional classification, federal-aid classification, and to some extent, its location. A total of nine digits are used corresponding to the route, section, and sub-section digits on the urban and rural worksheets.

(2) Rural Route Numbering System

Rural highways are identified in the following manner:

- 33 -

Rural functional classification code numbers are as follows:

 Interstate
 1

 Principal Arterial
 2

 Minor Arterial
 3

 Major Collector
 8

 Minor Collector
 9

 Local Road
 6

Route sections (digits 5, 6, and 7) are numbered consecutively from the beginning of the route with breaks made at junctions with county lines and urban-in-fact boundaries. Thus, a typical route number on a section of FAP-1 classified as a principal arterial would be 2001-006-01.

(3) Urban Route Numbering System

The numbering of urban highways differs somewhat from the rural as follows:

Urban functional classification code numbers are as follows:

Interstate1Principal Arterials5Minor Arterials7Collectors9Local Roads6

The urbanized area code identifies the urbanized area on previously renumbered federalaid highways in Billings and Great Falls.

The route section number of the rural numbering system has been replaced with a 3-digit code number identifying the incorporated city. The sub-section numbers, as in the rural system, identify the physical section breaks and are numbered consecutively from 'the beginning of the urban route to the end.

(4) Non-Federal-Aid Route Numbering

Both urban and rural NFA routes were assigned 3-digit route numbers. The rural NFA routes were numbered consecutively from No. 801 beginning in Beaverhead County and continuing alphabetically through Yellowstone County. Urban NFA routes were numbered consecutively beginning with No. 701 in each urban-in-fact area.

(5) Spur Routes

Rural spur routes of federal-aid systems are identified by the prefix 9 on the 3-digit route section number. Urban spurs are identified by the prefix 5 on the 2-digit sub-section number. For example, a spur route of FAP-1 might be identified as follows: 2001-901-01. Likewise, an urban spur of FAP-2 in Butte might be 5002-018-51.

C. DESCRIBING EXISTING CONDITIONS

Describing the existing physical condition of the roadway sections that were analyzed was done in two ways: (1) on federal-aid primary roads, the detailed data in the Federal-Aid Road Log and the Montana Primary Highways Sufficiency Rating was used; and (2) on federal-aid secondary and non-federal-aid roads, a field inventory was done to collect sufficient data to describe the section in detail.

In the case of rural minor collectors and local roads, and urban collectors and local streets, no new information was collected. These systems will not be on the future federal-aid system (with the exception of some urban collectors on the federal-aid urban system), and it was felt that the effort required to inventory these roads was not warranted. Data collected for the 1970-1990 Study was used as a representative sample to project needs on these systems.

The data coded to describe the physical conditions of each section of roadway is shown under *Existing Conditions (1972)* of the arterial and collector worksheets on Figures No. 5 and 6.

D. FIELD INVENTORY

A field inventory was conducted on the rural principal arterials, minor arterials, and major collectors and the urban principal arterials and minor arterials, excluding those routes on the federalaid primary system.

			- 00	
	F	IGURE	NO. 5	
RURAL	ARTERIAL	AND	COLLECTOR	WORKSHEET

BOB No 04 569053

					10 04 30703
CARE)]			CARD 2	
IDENT	IFICATION		Calumaa	ANALYCIC OF DEFICIENCIES	0.1
	State	r-r-ł	Lolumns	ANALTSIS UP DEFICIENCIES	Columns
1.		+	1-2	1-5 Identification (Repeat card 1)	1-14
2.	Douto Number	+	3-5	34. 1990 A DI	20
).	Route Number	+	6-9	35. Average Annual Traffic Growth %	1
4.	Route Section	+	10-12	36. Percent of Length with Intolerable	21-22
<u> </u>	Subsection Number	+	13-14	Safe Speed (1990)	
6.	Length (0. 1 mile)		15-17	37. Time of Pavement Now 1-5 6-10 11-15 16-20 20	24
7.	1968 Functional Classification		18	Condition Deficiency 1 2 3 4 5 6	}
8.	1990 Functional Classification	Ц	19	38. Deliciencies:	i
	Code ('68 and '90) Functional System			Code	
	Interstate			30998	
	2 Other Principal Arterial				
	3 Minor Arterial 4 Major Collector			Operating Speed	
	5 Minor Collector			Lane or Roadway Width 2	
1	6 Local (*68 Only)			Safe Speed 3	
	7 Did Not Exist ('68 Only)			Pavement Type and /or Condition 4	
9.	Federal-aid System		20	Shoulders 5	
	I FAP. Including Interstate, 2 FA5.	-		None 6	
	3 Non FA, 4 New				00
10	Jurisdictional Personscibility		21	39. Initial Dericiency Code	10
10.	State 2 Enderst Durit Committy	L	21	40. Secondary Deficiency Code	26
	4 Other Existing 5 New			41. Period Section Now 1-5 6-10 11-15 16-20 20	27
EVICT	INC CONDITIONS			Becomes Deficient 1 2 3 4 5 6	
EAIST	ING CONDITIONS			DESCRIPTION OF IMPROVEMENT	
Geom	etrics			42. Year of Improvement	28-29
11	Access Control Full Partial None		22	43. ADT First Year After Improvement	30-35
	1 2 3	L	26	44. Type of Improvement	36
12.	Lane Width (feet)		23-24	0 No Improvement	
13.	Number of Lanes		25-26	1 New Location	
14.	Shoulder Width (feet) Right		27-28	2 Reconstruction	
	Left		20-30	3 Isolated Reconstruction	
	Elat Rolling Mauraine	L	27.50	4 Major Hidening	
15.	Terrain La 2		31	6 Resurfacing and Shoulder Improvement	
				7 Resurfacing	
16.	Percent of Length with		32-33	45 Design Year ADT	37-42
	Intolerable Safe Speed			46 Design Standard Number	13-11
17.	Percent of Length with		34-36	Fill Partial None	++ (+
	Sight Distance \geq 1500 feet			47. Access Control 1 7 3	45
18.	Median Width (feet)		37-38		4/ 47
19.	Average Highway Speed (mph)		39-40	48. Number of Lanes	46-47
20.	Number of Signals and/or Stop Signs		41-42	RAILROAD CROSSINGS	
21	Turne of Development Rural Dense		42	Number of RR Crossing With: Present 1990	
21.	Type of Development	Ц	43	49. No Protective Devices	48
22	Available Right-of-Way fact			50. Cross Bucks	49-50
Traffic				51. Flashing Lights	51-52
23			44-40	52. Flashing Lights and Gates	53-54
20.	Porcent Trucks		44-49	53. Grade Separations	55-56
24.	K Eactor (DUV/ADT)		50-51	STRUCTURES	
26	Directional Easter	-+	22-23	54 Number of Structures (Present)	67-60
20.	Capacity (hourly)		54-55	Number of Deficiencies (Existing Structures).	JI J0
21.	Operating Speed (mab)		20-00 61-62	55 Width	50-60
20. Struct	ural		01-02	56 Vertical Clearance	61-62
Struct	Surface Tube		(2	57 Loading	63-44
29.	Surrace type	4	63	58 Other	65-64
	1 High-Flexible 7 High-Rigid			59 Number of New Structures Needed	67-49
	3 Intermediate			60 Time of Structure New Listene Line Line Line	60
	4 Low			Needs	09
	5 Gravel				
	b Graded & Drained			CARD NUMBER 2	80
30.	Pavement Section		64	CARD 3	
	'5N' Known 'D' Known Heavy Medium Light			COSTS Thousands	
	1 2 3 4 5			1-5 Identification (Report cord 1)	1.14
	Structural Number (SN) or Slab Thickness (D)		65-66	6] Pight-of-Way	1-14
31	Pavement Condition (PSR		67-68	62 Grading & Drainage	15-20
51.	or equivalent- 0.01		01 00	63 Surface & Base	21-20
	Surfared Social East			64 Other	27-30
32.	Shoulder Type Surfaced Stabilized Earth		69	65. Structures (incl. DB Crede See)	31-34
				66 Maintenance	35-40
33.	Drainage Adequacy Good Fair Poor	[····]	70	67 Administration	41-44
	1 2 3	L		68 Total	45-48
				00. 10(d)	49-54
CARD	NUMBER	1	80	60 Cost Area	55.57
	REMARKS:			70 Expansion Factor (00.00)	57-56
					57-00
				CARD NUMBER 3	80
				REMARK S:	-

- 37 -

FIGURE NO. 6

	URBAN ARTERIA	L AND	COLLECTOR WORKSHEET BDB No 04 5	\$69053
CARD 4			CARD 5	
IDENTIFI	CATION	Columns	ANALYSIS OF DEFICIENCIES	umns
1	State	1-2	1-6 Identification (Repeat card 4)	- 17
2.	Urbanized or Small Urban Area	3-5	39. 1990 ADT	-23
	Code Population Code Population		40. Average Annual Traffic Growth 2%	25
	997 5.000- 9.999 999 25.000-49.999 998 10.000-24.999 999 50.000-		41. Time of Pavement Now 1-5 6-10 11-15 16-20 20 20 20 20 20 20 20 20 20 20 20 20 2	
	*Use Urbanized Area Code (See Appendix A)			
3.	County	6-8	42. Deficiencies:	
4. 5	Route Number	9-12	Code s o S	
у. 6	Subsection Number	10-17	200 200 200 200	
7.	Length (0.1 mile)	18-20	Operating Speed or V/C Ratio	
8.	1968 Functional Classification	21-22	Lane Wigth 2	
9.	1990 Functional Classification	- 23.24	Pavement Type and/or Condition 4	
	Urban Code ('68 and '90) Functional System Code		Cross Section & Drainage s	
	Pop 5-10 10-25 25-50 50 (*68)		None	~
	12 22 32 42 Other Freeway & Expressway -		43. Initial Deficiency Code	20 27
	14 24 34 44 Minor Arterial 03		44. Secondary benciency code	28
	15 25 35 45 Collector -		Becomes Deficient I 2 3 4 5 6	
	Minor 05			
	16 26 36 46 Local ('69 only) 06 AA BB CC DD Did Not Exist ('68 only) EE		OESCRIPTION OF IMPROVEMENT	2 20
10.	Federal-aid System: FAP. Including Interstate, 2 FAS.	25	46. Year of Improvement	7-30 1-36
11	3 Non-FA 4 New	26	4/. ADI FIRST Year Alter Improvement	37
11.	Comparation I and A Dural Principal Attended 2 Bural Minor Article	20	0 No Improvement	
12.	Connecting Link of: 3 Not a Connecting Link	27	I New Location	
EXISTIN	G CONDITIONS		3 Isolated Reconstruction	
GEOME	TRICS		S Minor Widening Freeways & Expressways	
13	Access Control Full Partial None	28	6 Widening-Other Arterials & Collectors 7 Resurfacing & Shoulder Improvements	
14	Approach (curb.curb) or Lavo Width (feet)	20-31	8 Resurfacing	8-13
15.	Number of Lanes	32-33	49. Design Year ADI	4-45
16.	Shoulder Width (where applicable; feet) Right	34-35	Full Partial None	16
17	Peak Hour / Des Side Beth Sider Ness	38	51. Access control	40
47.	Parking 1 2 3		52. Number of Lanes	7-48
18.	Peak Hour I I-Way 2. Way I Way Rev 2. Way Rev	34	53. Traveled Way Width (feet)	9 JI
	Operation 1 1 2 3 4		RAILROAD CROSSINGS	
19.	Percent of Length with	40 41	Number of RR Crossings with: Present 1990	
20	Median Width (feet)	42-43	54 No Protective Devices	22 3-54
21	Madian Type Curbed Positive Barrier Unprotected	AA	56 Flashing Lights	5-56
21.		AF AC	57. Flashing Lights and Gates 57	7-58
22.	Average Highway Speed (Fwys & Expys Unity)	45-46	58. Grade Separation	9-00
24.	Typical Percent Green Time	49 50	STRUCTURES	
25.	Type of Signalization	51	59. Number of Structures (Present) 61	1-62
	Uncoordinated Fixed Time 2 Traffic Actuated 3 Progressive		Number of Deficiencies (Existing Structures):	2-61
26. 27	Estimated lotal Available Row Width (feet)	52	60. Width 65	5-66
£1.	CBD 3 Server or Lore	-	62. Loading	7-68
	2 CBD-1 Stories or More		63. Other 69	9-70
	3 Fringe 4 Outlying Business District		64. Number of New Structures Needed	1-72
	5 Residential – Apartments and Row Houses		65. Time of Structure Needs Now 7.5 6-10 11-13 16-20 20	73
	7 Residential - Single Family - Over 1 2 Acre			80
TDACE	8 Rural			
28		53-58	COST Thewards	
29.	Percent Trucks	59-60	CUST, Thousanus	1 17
30.	K Factor (DHV/ADT)	61-62	66 Right of Way	8-23
31.	Directional Factor	65-69	67. Grading & Drainage	4-29
33.	Present Operating Speed (Fwys & Expys Only)	70-71	68. Surface & Base 30	0-33
STRUC	TURAL		69. Other 70. Structures (incl. RR Grade Sep.)	4-37 8-13
34.	Surface Type	72	71. Maintenance	4-47
	High-Flexible 4 Low	-	72. Administration	8-51
	3 Intermediate 6 Graded & Drained		13. IOTAI	12-57
35	Pavement Section D' Known Heavy Medium Light	73	74. Expansion Factor (00, 00)	8-61
<i>.</i>	Structural Number (SN) or Slab Thickness (D)	74-75		80
36.	Pavement Condition (PSR or equivalent-0.0)	76-77		
37	Shoulder Type Surfaced Stabilized Earth	78	Kemarks:	
51.		70		
38.	Section Adequacy I 2 3	_ / /		
CARD	NUMBER	4 80		

The field inventory consisted of driving the roads and coding information which described the physical type and condition of the road. Data recorded included length of section, cross-section characteristics, pavement type and condition, traffic control devices, safe speed and sight distance restrictions, and type of development near the roadway. This data, particularly the section lengths, was checked with existing recorded data where possible.

Approximately 5,933 miles of roadway was field inventoried during this study.

Problems encountered in field inventory were:

- (1) On federal-aid secondary routes, some study sections did not agree with data recorded in the Federal-Aid Road Log with regard to length, width and pavement type. On non-federal-aid routes, field data did not always agree with the Department of Highways' local road inventory. Adjustments were made to make the field inventory agree with the official state data. However, those sections not agreeing were documented and referred to the Department of Highways for possible future correction.
- (2) In rural areas, some difficulty was encountered in determining the percent of length with intolerable safe speed and percent of length with sight distance less than or equal to 1,500 feet. The method used was to record the intolerable length as measured by the automobile odometer and divide the intolerable length by the section length to obtain the percent intolerable.
- (3) Safe speeds were estimated by driving the section at a prudent speed.
- (4) In urban areas, heavy traffic volumes made it difficult to measure roadway widths. Also, the percent of green time at peak hour periods was difficult to obtain because of the short peak hour periods.

Overall, however, it is felt that the data collected during the field inventory is sufficiently accurate for the purposes of this study.

E. MINIMUM TOLERABLE CONDITIONS

Minimum tolerable conditions establish the criteria by which the physical description of each section of roadway is compared to determine the adequacy or deficiency of each section. If the existing condition of the roadway did not meet or exceed the minimum tolerable conditions, the section was considered to be inadequate (backlog deficiency). If the section was adequate now, the condition of the roadway was projected in five-year increments to determine if the section would become deficient in the period from 1972 to 1990 (accruing deficiency).

Minimum tolerable conditions provided by the Federal Highway Administration for the 1970-1990 Study were reviewed by the Consultant. Some recommendations for changes were made to bring the minimum tolerable conditions into agreement with current state practices. The revised minimum tolerable conditions were submitted to a review by the Department of Highways and Federal Highway Administration. Comments from these agencies were incorporated into the Minimum Tolerable Condition Tables.

The minimum tolerable conditions that were used to determine deficiencies for the 1974 Update are shown in Tables No. 15 and 16.

F. DESIGN STANDARDS

The type and costs of improvements to be made on deficient sections is dependent upon the design standard of the proposed facility.

Design standards provided by the Federal Highway Administration for the 1970-1990 Study were reviewed by the Consultant and modified to agree with current state practices. The revised design standards were reviewed by a committee within the Department of Highways and by the Federal Highway Administration. Comments from these groups were incorporated into the design standard tables.

The final design standard tables are shown in Appendix A.

As part of the process of quantifying design standards, the Consultant prepared typical sections of the design standards to be used in determining quantities. These typical sections are shown in Appendix A.

G. TRAFFIC AND CAPACITY

Traffic data was compiled and coded on worksheets by the Planning and Research Bureau – Department of Highways. Existing traffic data was available on most urban and rural highways from normal traffic counts taken each year by the Department of Highways. Since the Department of Highways anticipated the need for this study, many local road and street counts were taken in addition to normal traffic counts. Existing traffic data, based upon these actual field counts, is considered to be accurate and representative of actual traffic.

Traffic was projected by examining historical records on traffic volumes and projecting the trends into the future. In those cases where transportation plans had been completed and traffic assignments made on a future network, those projected traffic volumes were used. It is noted that historical trends and transportation plans done in the past may not have relevance in the future. However, it is beyond the scope of this study to assess the future effect of the energy crisis because of inadequate data in the present and uncertainties in the future. We have therefore determined that for the purposes of this study, historical data is the best information that can be used.

Operating speeds for each functional system was specified in the minimum tolerable conditions and design standard tables. These operating speeds established the level of service for each system depending on the type of travel each system was to serve. Capacity calculations and existing traffic volumes were used with the operating speed curves in the *Highway Capacity Manual* and the physical limitations of the roadway to determine the number of lanes, parking restrictions, and other operating characteristics of the roadway.

H. DEFICIENCY AND IMPROVEMENT ANALYSIS

(1) General

Deficiencies in a roadway section occur when the physical characteristics of the roadway do not meet or exceed the established minimum tolerable conditions. (Minimum tolerable conditions are shown in Tables No. 15 and 16.) If the section is adequate now, the physical characteristics are projected to see if the section would become deficient sometime in the study period.

The type of improvement to be applied to a deficient section is based upon the type of deficiencies occurring. Improvement types used in this study were new location, reconstruction, isolated reconstruction, widening, or resurfacing. The improvement type was chosen by a combination of logic charts (illustrated in Figures No. 7 through 10), knowledge of the particular roadway section, and judgement.

(2) Deficiency Analysis

The deficiency analysis was conducted for the period 1974 through 1995. Any deficiency occurring during or before 1974 was considered to be a backlog deficiency. A deficiency occurring after 1974 and before 1995 was considered an accruing deficiency. Accruing deficiencies were determined and reported in five-year increments on the worksheets.

Deficiencies for both urban and rural roads were grouped into five general categories as follows:

(a) **Operating Speed Deficiency**

An operating speed deficiency occurs when the operating speed falls below the operating speed specified in the minimum tolerable condition tables. Operating speeds were determined by calculating the traffic-volume-to-capacity (v/c) ratio and, combined with the average highway speed, using the operating speed curves in the *Highway Capacity Manual* to determine the operating speed.

(b) Lane or Roadway Width Deficiency

A lane or roadway width deficiency occurred when the lane width was less than eleven feet for rural sections or less than ten feet for urban sections. The lane width combined with the shoulder type and width as specified in the minimum tolerable conditions tables determined the roadway width adequate or deficiency.

AND COLLECTORS ARTERIALS MINIMUM TOLERABLE CONDITIONS FOR RURAL

Functional System	PRIN. ART.		M	INOR	AR	TERI/	ALS)	COLL	ECT	ORS				
Analysis Year A.D.T.	All	0	450	4	50 - 2	800	2	800+		- 0	100		100 -	450	4	50 - 2	800		2800-	
Terrain	F R M	Ц	R	Ц	R	W	Ц	R	M	Ľ	~	I	R	W	[I]	R	Σ	Ľ	Я	Σ
Operating Speed (Peak Hr.)	55 50 45	40	40 3	5 5() 45	40	50	45	40	1	1				4	0 3;	30	40	35	30
Surface Type (Note 1)	High	Inter	nediate	In	terme	diate	1	High		Gr	avel		Lo	M	In	terme	diate	Inte	rmed	iate
Surfaced Roadway Width	32 32 30	28	28 2	6 28	8 28	26	30	30	28	•	22	(1	4	4 2	4	8 2(5 26	30	28	28
Lane Width	11		11		11			11			11		1	1		_			11	
Paved Shoulder Width	5 5 4	б	З	<u> </u>	с С	0	4	4	ω			1	1	1		с, С	0	4	ω	ŝ
Safe Speed	65 55 45	60	50 4	0 0) 50	40	60	50	40	40	35	25 5	0 4	0 3	0 5	0 4() 30	50	40	30
Stopping Sight Distance	550 415 315	475 3	50 27	5 47:	5 350	275	475	350 2	:75	·		35	0 27	5 20	0 35	0 275	5 200	350	275	200
Maximum Curvature (Degrees) -	5 6 10	5	8	m	8	13	5	×	13	, I	ľ	1	8 1	3 2	3	8 13	3 23	∞	10	18
Maximum Gradient, % (Note 2) –	3 4 8	ĸ	5	6	5	6	ю	5	6		·		4	6 1	1	4	5 11	4	5.5	10
Number of Lanes	Note 3	7	7	0	5	5	Z	ote 3		7	7	0	7	5	7	2	0	~	Note 2	
Pavement Condition Rating (Note 4)	2.6		2.1		2.1			2.6		·	1		5.	_		2.]			2.1	
RR Crossing Protection (Note 5)																				
Structures:																				
Width (Note 6)	T + 6'	L	+ 4'		+ L	,4	[+ 4′			I		+ 1	2,		$^+$ L	2'		Γ + 2	
Vertical Clearance	15		14		14			15			4		1	+		14			15	
Loading	H - 20	H	- 15		H - 1	5	Η	- 20		Н	15		- Н	15		- H	5	<u> </u>	H - 20	

Notes

- ness of 7 inches or more. Also, any portland cement concrete; Intermediate-Mixed bituminous or bituminous penetration road on a flexible base with a combined thickness of less than 7 inches; Low-Bituminous surface course (less than 1 inch thick) on a base suitable to carry occasional heavy axle loads. Surface Type: High-Mixed bituminous or bituminous penetration road on a rigit base or on a flexible base with a combined (surface and base) thick-
- 2. Short grades less than 500 feet in length may be two percent steeper.
- Number of lanes required to maintain the peak hour operating speed specified above. 3.
- Defined by: Present Serviceability Rating (PSR), Present Serviceability Index (PSI), or Equivalent Sufficiency Rating. 4.
- As defined in Table 111-15, pg. 111-39, Railroad Crossing Protection Criteria, National Highway Functional Classification and Needs Study Manual, Federal Highway Administration, February 1970. (BOB No. 04 - S69053). S.
- T = Traveled Way; for bridges over 250' long, widths 4' less than shown, but never less than the approach traveled way, will be considered tolerable. 6. .
 - The minimum tolerable conditions shown above are intended only as the basis for determining the adequacy, or inadequacy, of the study sections in the highway needs analysis. They are not intended to certify the adequacy of any particular section of highway

- 41 -

MI Functional System Type of Area Dperating speed (peak hr.) Jane width (ft.) Lane width (ft.) Jane width (ft.) Surface type	NIMUM TOLERABL Freeway/cxpressway (Uninterrupted flow) Built-up Outlying Area Area 35 40 11 11 (1) (1) High 8 8 Surfaced (3) (3) (3)	E CONDITIONS FOR L Other Urban Urban Mino Principal Arterial Arterial 0.190 0.85 0.90 10 10 10 10 10 10 10 10 70 20 High Intermediat 6' on uncurbed sections Stabilized	IRBAN ARTERIALS AND r Surface width Lane width Cross section	COLLECTORS ban Collector Street Sufficient traffic lanes to restrict conges- tion (v/c >0.9) to a relatively short daily period. A capacity analysis is not warranted unless ADT exceeds 7,000. 10 On uncurbed sections at least a 5-ft. shoul- der should exist with a ditch adequate to carry all but extremely heavy rainfall. Where adjacent area is more than 50% de- veloped, a curbed section should exist.
Cross section (4) Bafe speed (5) Pavement condition rating RR crossing protection Btructures: Width (ft.)		Curbs, gutters, and enclosed drainage 35 30 2.6 2.1 Table A-3 Curb-curb width of approach roadway (6) 14 14 H-15 H-15	Safe speed (mph) (/) Surface type Pavement condition (PSR or equivalent) RR crossing protection Structures: Width (ft.) Vertical clearance (ft.) Loading	25 Low 2.1 See Table A-3 Prevailing width of travel way 14 H-15
 As necessary to maintain r Overall street width as req Positive type median prote An open ditch section on a 	minimum operating sp uired to maintain may ection unless width is arterial streets in outl	eed specified. ximum v/c ratio. at least 30 feet. ying areas with less than 5	0% development is tolerable.	

- This item is applicable to at-grade streets in outlying sections of urban areas where travel speeds are such that alignment becomes an important consideration. The lengths of critical curves and/or sight distance situations will be evaluated in determining needs. \hat{c}
- Where a shoulder rather than curbed section is tolerable, the structure width should be at least the traveled way width plus four feet. 9
- This item is applicable to collector streets in outlying sections of urban areas where travel speeds are such that alignment becomes an important consideration. The number of critical curves or sight distance situations will be evaluated in determining needs. 6
- The minimum tolerable conditions shown above are intended only as the basis for determining the adequacy, or inadequacy, of the study sections in the highway needs analysis. They are not intended to certify the adequacy of any particular section of highway. 8

- 42 -

- 43 -FIGURE NO. 7

IMPROVEMENT ANALYSIS GUIDE FOR RURAL PRINCIPAL ARTERIALS

RECONSTRUCTION

REQUIRED WIDENING AND RESURFACING

NEW LOCATION

RECONSTRUCTION

ISOLATED RECONSTRUCTION

REQUIRED WIDENING AND RESURFACING

RESURFACING

- 45 -FIGURE NO. 9 IMPROVEMENT ANALYSIS GUIDE FOR URBAN PRINCIPAL ARTERIALS

National Highway Functional Classification and Needs Study Manual

- 46 -FIGURE NO. 10 IMPROVEMENT ANALYSIS GUIDE FOR URBAN MINOR ARTERIALS

(c) Safe Speed Deficiency

A safe speed deficiency occurred when the physical characteristics on a portion of the roadway would lower the safe driving speed below the minimum tolerable conditions. Sections having 40% or greater lengths with intolerable safe speed were considered to be totally deficient and required reconstruction. Sections with 20 to 40% of their lengths with intolerable safe speed (if no other deficiency occurred) were considered for isolated reconstruction.

(d) Pavement Deficiency

A pavement type or condition deficiency occurred when the pavement failed to meet the minimum tolerable conditions. Remaining pavement life was calculated by the method used in the 1970-1990 Highway Functional Classification and Needs Study Manual and used to determine future pavement deficiencies.

(e) Cross-Section or Shoulder Deficiency

A deficiency for roadway cross-section or shoulders occurs when the shoulders are not wide enough or of the proper type. Drainage deficiencies occurred when the drainage system was inadequate for the type of system under analysis.

In addition to the above categories, railroad crossings and structures were compared with minimum tolerable conditions to determine deficiencies.

(3) Improvement Types

The improvement types that were applied to the deficient section based upon the kind of deficiency occurring were grouped into the following categories:

(a) New Location

New location is the construction of a new facility on a new location. This improvement is required when the existing location is unsatisfactory because of right-of-way or terrain limitations and reconstruction on the existing alignment is not feasible. New roads are also in this category.

(b) Reconstruction

Reconstruction is the upgrading of a facility on the same alignment. Additional rightof-way was acquired if needed for the improved facility and was available. Most of the improvements were reconstruction, because this is the type of improvement most commonly done.

(c) Isolated Reconstruction

The correction of isolated roadway sections that are causing intolerable operating or safe speed is called isolated reconstruction. Such corrections are considered to be accomplished on essentially the existing alignment and right-of-way.

(d) Widening

Any widening of a roadway section on existing alignment up to the width of adding an additional lane. (Adding lanes is a reconstruction improvement.) Additional right-ofway was usually required for this improvement type.

(e) Resurfacing

The application of a plant mix overlay over the full width of existing pavement. This improvement was done when all characteristics of the road except pavement were satisfactory.

(4) Railroad Crossings

The adequacy of existing and the need for additional railroad crossing protection was determined from exposure factors resulting from 1990 traffic. The type of railroad crossings required for various levels of exposure factors was provided in the Study Manual for the 1970-1990 Study. This table is shown in Appendix A.

(5) Structures

Structure deficiencies are determined from the minimum tolerable conditions in the same manner as roadway deficiencies. Improvements are either widening of the existing structure, complete replacement, or the construction of a new structure where none presently exists. A widening type improvement occurs only when the width to be widened is less than 1/3 of the total required width of the structure. Widening any more than this is not economically feasible. All structures having loading deficiencies require total replacement.

I. UNIT AND PER-MILE COSTS

After the improvement for each section was established, the cost for the improvement was found by multiplying the section length by the per-mile cost for the improvement. The per-mile costs were developed from actual construction costs for projects bid during the five-year period from 1968 through 1973. Structures costs were developed on a unit cost-per-square-foot of improved structures for widening of existing structures and complete replacement or new structures. A detailed development of the per-mile costs is contained in Appendix B.

J. MAINTENANCE COSTS

(1) General

Revised per-mile maintenance costs for each functionally classified system were developed from state summaries of actual on-the-road maintenance costs provided by the State Highway Department, and the *County and Local Road Fiscal Report* for fiscal year 1972. Interstate, primary, and secondary maintenance expenditures were related to the functionally classified system by assuming that: (1) Interstate maintenance costs were directly equivalent to adjusted interstate expenditures. Adjustments were made to account for the fact that the interstate system as a whole has not as yet reached its average maintenance life. The average life was determined from a study of interstate projects made for the 1970-1990 Study; (2) Principal arterial maintenance costs were a combination of adjusted interstate and direct primary expenditures; (3) Minor arterial maintenance costs were a combination of direct primary and secondary expenditures; and (4) Collector maintenance costs were directly equivalent to secondary expenditures.

Urban maintenance costs were developed from actual expenditures in 13 urban areas and rural costs were developed by subtracting the urban costs from the state totals. Mileages from the 1970-1990 Study were used to proportion the costs by functional system.

An administrative and overhead factor was developed by comparing the total amount budgeted for maintenance in 1972 to the state total on-the-road expenditures for 1972. The permile maintenance costs were expanded by this amount to bring the total into agreement with the budgeted amount.

Local road and street maintenance costs were developed by dividing the total expenditures by the 1972 Road Log mileages. Maintenance costs for local interstate frontage roads are included in the local road analysis. A summary of the annual per-mile maintenance costs as reviewed and approved by the Maintenance Division of the Montana Department of Highways is given in Table No. 17.

ANNUAL PER-MILE MAI	15	
Functional System	Annual Pe 4-lane	r-Mile Cost 2-lane
Rural		
Interstate	\$2,411/mi	\$1,930/mi
Principal Arterials	2,884	2,309
Minor Arterials	2,804	2,245
Collectors (Major and Minor)	1,358	1,087
Local Roads	-—— n/a	572
Urban		
Interstate	8,044	6,438
Principal Arterials	6,108	4,888
Minor Arterials	3,855	3,085
Collectors	3,538	2,832
Local Streets	n/a	1,994

TABLE NO. 17

K. ADMINISTRATIVE COSTS

Administrative costs are developed as a percentage of the total construction and maintenance costs. Since it was judged that very little change had occurred since the 1970-1990 Study, the percentages developed for that study were left unchanged. These percentages are listed in Table No. 18.

ADMINISTRATION COSTS AS	A PERCE	ENT OF CON	STRUCTION
Urban & Rural Functional System	Rural	Urbanized	Small Urban
Principal Arterials	6.75	6.75	6.75
Minor Arterials	- 7.83	7.67	6.50
Collectors	- 8.92	8.59	6.26
Local Roads or Streets	- 10.00	9.51	6.01
Principal Arterials Minor Arterials Collectors Local Roads or Streets	6.75 7.83 8.92 10.00	6.75 7.67 8.59 9.51	6.75 6.50 6.26 6.01

TA	BLE	NO.	18

L. SECOND-GENERATION COSTS

Second-generation costs are those costs that occur during the study period after an improvement has been made. These costs are limited to resurfacing only, since the initial improvement would have brought the section up to standard in all other respects.

A 14-year pavement life has been assigned to all paved surface. Therefore, all sections having improvements scheduled on or before 1980 have second-generation resurfacing costs included in their total needs.

M. NEEDS ANALYSIS ON RURAL MINOR COLLECTORS AND URBAN COLLECTORS

The rural minor collectors and urban collectors were not anticipated to be on the federal-aid system. Consequently, the importance of these systems was not emphasized in this study. Needs on these systems were estimated by updating the data on the sampled worksheets taken during the 1970-1990 Study (approximately 10% of each system's mileage) and expanding the sampled needs to total state-wide needs for these systems.

N. NEEDS ANALYSIS ON LOCAL ROADS AND STREETS

In the 1970-1990 Study, the needs for local roads and streets were estimated by a *mass analysis* procedure using survivor curves to determine deficiencies. This procedure was not compatible with the method used for other functional systems. For this study, the data on the sampled local roads and streets (approximately 5%) obtained for the 1970-1990 Study was used, but the procedure for estimating needs was done on a per-mile basis. This method makes the estimate for local roads and

streets compatible with the other functional systems. A detailed description of the needs analysis for local roads and streets is contained in Appendix C.

O. SUMMARY OF NEEDS ANALYSIS

(1) Consistency Tests

To insure that the needs analysis is consistent with proposed improvements, several consistency checks were made. Proposed improvements in both urban and rural areas were compared with projects proposed or scheduled by the project control officer of the Department of Highways. In addition, maps were prepared on future two-lane and four-lane roads in the state so that individual characteristics of a single section would not induce inconsistencies in the highway systems. The proposed four-lane routes in Montana as identified by this needs study are shown in Figure No. 11.

(2) Cost Comparisons

In addition to the consistency checks, cost comparisons were made with proposed projects, particularly those routes on the priority primary system. The cost comparisons came out to be within reasonable limits of accuracy.

(3) Summary

Tables No. 19 and 20 summarize the results of the Needs and Improvements Analysis. The costs shown include construction, engineering, maintenance, administration, and second-generation needs. In other words, the total needs for all highways in the state regardless of jurisdictional responsibility.

(4) Conclusion

Data on available revenue for highway investment was developed for the 1974 National Transportation Study. Assuming approximately the same level of investment as is currently being expended, approximately \$3,268,000,000 in 1972 dollars will be available to expend on highway investments for the 20-year period from 1974 through 1994. This includes annual funds (funds used for annual costs such as maintenance and administration) and construction funds (funds used for actual construction). The available funds are shown in Table No. 21.

Comparing the estimate of \$8,334,409,000 needed for highway investment for the 20-year period 1974 to 1994 with the estimated revenue of \$3,268,000,000 available for investment in the same period, it is seen that available funding will be about 5 billion dollars short of satisfying the needs. Or, in other words, only about 40% of the identified needs can be satisfied by available funding.

This data presents the obvious need for establishing a valid priority programming system. It is imperative that investments be made wisely to obtain the maximum benefit from the in-

TABLE NO. 19

INDIVIDUAL URBAN FUNCTIONAL SYSTEMS NEEDS

Functional Classification	1990 Miles	Deficient Miles	Administration Needs (\$1000)	Maintenance Needs (\$1000)	Construction Needs (\$1000)	2nd Generation Needs (\$1000)	Total Needs (\$1000)
Billings							
Interstate	13.0	*	171	2,091	448	1,543	4,253
Other Principal Arterials -	52.4	50.1	1,924	5,853	22,643	2,826	33,246
Minor Arterials	54.1	54.1	2,382	3,520	27,561	2,700	36,163
Collectors	64.0	64.0	2,148	3,625	28,190	2,910	36,873
Local Streets	444.8	415.3	11,128	17,738	99,291	* *	128,157
Total	628.3	583.5	17,753	32,827	178,133	9,979	238,692
Great Falls							
Interstate	6.4	*	79	1,030	147	760	2,016
Other Principal Arterials -	29.8	29.8	1,247	3,300	15,190	1,727	21,464
Minor Arterials	46.4	45.7	2,179	3,046	25,275	2,244	32,744
Collectors	36.2	36.2	1,030	2,050	13,210	1,438	17,728
Local Streets	303.4	283.7	7,195	12,102	63,565	**	82,862
Total	422.2	395.4	11,730	21,528	117,387	6,169	156,814
Missoula							
Interstate	7.6	*	83	1,223	6	902	2,214
Other Principal Arterials -	24.4	23.3	1,038	2,789	12,568	1,619	18,014
Minor Arterials	41.0	39.7	1,560	2,538	17,799	2,000	23,897
Collectors	44.2	44.2	1,675	2,503	22,315	2,118	28,611
Local Streets	420.4	407.8	12,527	16,767	114,964	* *	144,258
Total	537.6	515.0	16,883	25,820	167,652	6,639	216,994
Small Urban (5,000-50,000)						
Interstate	24.7	*	366	3,974	1,445	2,932	8,717
Other Principal Arterials -	95.5	90.2	3,615	10,548	42,824	6,576	63,563
Minor Arterials	138.0	136.0	5,456	8,651	62,930	7,750	84,787
Collectors	141.4	141.4	2,952	8,009	39,151	7,985	58,097
Local Streets	1,038.9	973.9	15,111	41,432	210,009	**	266,552
Total	1,438.5	1,341.5	27,500	72,614	356,359	25,243	481,716

* All urban interstate is complete; construction needs indicate safety projects, not deficiencies.

** Second-generation costs not applicable to local roads and streets because low traffic volume results in longer pavement life expectancy.

TABLE NO. 20

FUNCTIONAL SYSTEMS NEEDS SUMMARIES

Functional Classification	1990 Miles	Deficient Miles	Administration Needs (\$1000)	Maintenance Needs (\$1000)	Construction Needs (\$1000)	2nd Generation Needs (\$1000)	Total Needs (\$1000)
		TOTAL URBA	N FUNCTIONAL	SYSTEM NEED	os		
Interstate	51.7	0	699	8,318	2,046	6,137	17,200
Principal Arterials	202.1	193.4	7,824	22,490	93,225	12,748	136,287
Minor Arterials	279.5	275.5	11,577	17,755	133,565	14,694	177,591
Collectors	285.8	285.8	7,805	16,187	102,866	14,451	141,309
Local Streets	_2,207.5	2,080.7	45,961	88,039	487,829	0	621,829
Total	3,026.6	2,835.4	73,866		819,531	48,030	1,094,216
		RURAL F	UNCTIONAL SY	STEM NEEDS			
Interstate	1,138.5	488.7	23,523	76,409	272,077	51,336	423,345
Principal Arterials	1,989.1	1,585.5	36,021	97,777	435,822	94,267	663,887
Minor Arterials	3,852.2	3,301.6	46,820	173,597	423,569	133,939	777,925
Major Collectors	5,810.5	4,829.1	49,045	127,743	423,960	164,324	765,072
Minor Collectors	10,464.3	7,795.9	89,469	225,659	774,925	292,885	1,382,938
Local Roads	44,676.2	44,676.2	293,366	511,094	2,422,566	0	3,227,026
Total	67,930.8	62,677.0	538,244	1,212,279	4,752,919	736,751	7,240,193
		TOTAL F	UNCTIONAL SYS	STEM NEEDS			1
Interstate	1,190.2	488.7	24,222	84,727	274,123	57,473	440,545
Principal Arterials	2,191.2	1,778.9	43,845	120,267	529,047	107,015	800,174
Minor Arterials	4,131.7	3,577.1	58,397	191,352	557,134	148,633	955,516
Collectors	16,560.6	12,910.8	146,319	369,589	1,301,751	471,660	2,289,319
Local Roads & Streets	46,883.7	46,756.9	339,327	599,133	2,910,395	0	3,848,855
Total Needs	70,957.4	65,512.4	612,110	1,365,068	5,572,450	784,781	8,334,409

and and

vestment in our highway systems. It is also pointed out that a substantial part of the investment in highways is on off-system roads. Therefore, it would behoove agencies other than the State to pay proper attention to highway planning and to establish their priorities in a logical manner.

The background data used in developing this study is on file at the Planning and Research Bureau-Department of Highways in Helena. Other agencies desiring to use the criteria and information may examine the data at this office upon request.

TABLE NO. 21

AVAILABLE FUNDS FOR HIGHWAY INVESTMENT FOR THE TWENTY-YEAR PERIOD 1974 TO 1995

Agency	Construction Funds (\$1000)	Annual Funds (\$1000)	Total (\$1000)
State	- \$ 251,000	\$ 501,000	\$ 752,000
FHWA Federal	- 987,000	0	987,000
Other Federal	- 508,000	240,000	748,000
Local	- 88,000	448,000	536,000
Private	245,000	0	245,000
Total	- \$2,079,000	\$1,189,000	\$3,268,000

APPENDIX A

Τ

TYPICAL SECTIONS

APPENDIX A

			Page
I.	Турі	cal Sections	
	A.	Design Standards	 A-l
	B.	Average Pavement Designs	 A-l
	C.	Typical Sections and Quantities Per Mile	 A-l

Table No. A-1:	Proposed Rural Design Standards		A- 2
Table No. A-2:	Urban Design Standards		A-3
Table No. A-3:	Railroad Crossing Protection Criteria		A-4
Table No. A-4:	Average Rural Pavement Designs for Base and Surfacing Cost Estimate		A-5
Table No. A-5:	Average Urban Pavement Designs for Base and Surfacing Cost Estimate		A-6
Typical Sections		A-7-	-A-21

I. TYPICAL SECTIONS

A. Design Standards

It has been previously stated that considerable effort was directed toward developing design standards that reflect those currently being used throughout the state. The basis for this effort was Chapter One of the *Road Design Manual*, Montana Department of Highways. Because the standards in this manual are given with respect to the Federal-Aid System of classification, the primary concern was to correlate them with the functional classification system. This was done with the assistance of the Preconstruction Section with due regard given to the Federal Highway Administration standards established in the 1970-1990 Study. The resulting design standards used throughout the cost analysis are shown in Tables A-1 through A-5. It was agreed that the urban design standards given in the 1970-1990 Study were representative of normal urban practice and required no revision so far as this study is concerned.

B. Average Pavement Designs

In order to compute the quantities necessary to determine the cost per mile for base and surfacing, it was necessary to develop various pavement designs with respect to the design standards. This was accomplished using the *Surfacing Design Procedure*, Montana Department of Highways. Certain variable factors needed to arrive at reasonable average designs were obtained with assistance from the Surfacing Design Engineer (MDH). The analysis and resulting pavement designs are shown in Tables A-4 and A-5.

C. Typical Sections and Quantities Per Mile

Having developed the design standards and average pavement designs, it was then possible to compute the base and surfacing quantities associated with each typical section. These quantities were computed according to the constants and procedures given in Chapter Nine of the *Road Design Manual* (MDH) and the results are shown on the individual typical section sheets included in this appendix.

A - 2

TABLE A-1

PROPOSED RURAL DESIGN STANDARDS

FUNCTIONAL CLASSIFICATION	PR	IN. A	ART.							MIN	OR	AR	TEF	RIAL	S		COLLE								ECTORS														
A.D.T. GROUP		ALL	•	0	-100	1	00	- 45	60	450	- 70	7 00	700	- 14	00	1400)-28	800	2	800	+	0	- 10	0	10	0 - 4	450	45	0 - 7	700	700) - 14	400	140	0-2	800	28	1001	-
DESIGN STANDARD NUMBER		2	3	4	5	6	7	8 9	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
TERRAIN	F	R	м	F	R	и	F	RI	м	F	R	м	F	R	м	F	R	М	F	R	м	F	R	м	F	R	м	F	R	Μ	F	R	м	F	R	М	F	R	м
MAXIMUM DESIGN SPEED, M.P.H.	70	60	50	70	60 s		o e	50 5	io ·	70 6	50 5	50	70	60	50	70	60	50	70	60	50	60	50	40	60	50	40	70	60	50	70	60	50	70	60	50	70	60	50
MAXIMUM DEGREE OF CURVATURE	3.5	5	7.5	3.5	5 7	.5 3	.5	5 7	.5	3.5	5 7	7.5	3.5	5	7.5	3.5	5	7.5	3.5	5	7.5	5	7.5	12	5	7.5	12	3.5	5	7.5	3.5	5	7.5	3.5	5	7.5	3.5	5	7.5
DESIREABLE STOPPING SIGHT DISTANCE, FT.	850	650	450	850	650 4	50 8	50 6	50 4	50 E	850 6	50 4	450 e	350	650	450	850	650	450	850	650	450	650	450	300	650	450	300	850	650	450	850	650	450	850	650	450	850	650	450
MINIMUM PASSING SIGHT DISTANCE, FT.	2500	2100	1800	2500	2100 18	00 25	00 2	100 18	300 2	500 2	100 1	8002	500	2100 1	1800	2500	2100	1800	2500	2100	1800	2100	1800	1500	2100	1800	1500	2500	2100	1800	2500	2100	1800	2500	2100	1800	2500	2100	1800
MAXIMUM GRADIENT, %	3	4	5	3	5	6	3	5	6	3	5	6	3	5	6	3	5	6	3	4	5	5	6	7	5	6	7	3	5	6	3	5	6	3	5	6	3	5	6
NUMBER OF LANES	N	OTE		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	NO	TE		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	.2	2
MEDIAN WIDTH, FT.	36	36	14																36	36	14																		
2-LANE ROADWAY WIDTH, FT.	44	44	44	28	28 2	8 2	8 2	28 2	8	30 3	30 2	28	36	34	34	40	40	40	44	44	44	26	26	26	28	28	28	30	30	28	36	34	34	40	40	40	44	44	44
SURFACING TYPE (SEE NOTE 2)																																							
R.O.W WIDTH (SEE NOTE 3)																												1											
STRUCTURES: WIDTH (SEE NOTE 4)																																							
VERTICAL CLEARANCE, FT.	16	16	16	16	16 1	6 1	6 1	16 I	6	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
LOADING	нѕ	20-4	44	HSa	20-44	ŀ	1520	0 - 44	4	HS20)-44	+	HS 2	20 - 4	4	HS	20-	44	нѕ	20-4	44	нѕ	15 - 4	44	HS	15-4	44	н	s 20 ·	44	нѕ	20-	44	нѕ	20-	44	HS	20-4	14

SOURCE: ROAD DESIGN MANUAL, MONTANA DEPARTMENT OF HIGHWAYS

NOTES

() MULTI-LANE FACILITIES TO BE PROVIDED DEPENDING UPON DESIGN CAPACITY AS FOLLOWS:

	DESIGN CA	APACITY, V.P.	H. per LANE
% TRUCKS	0	10	20
FLAT	1000	910	330
ROLLING	1000	770	630
MNT'OUS	1000	710	500

SOURCE: A POLICY ON GEOMETRIC DESIGN OF RURAL HIGHWAYS, 1965, AASHO.

(2) GENERALLY 'HIGH' TYPE SURFACING, i.e. mixed bituminous or bituminous penetrotion surface on o flexible or rigid base hoving o totol combined thickness of seven inches or more. LOW VOLUME COLLECTORS MAY JUSTIFY THE USE OF A GRAVEL SURFACE DEPENDING ON LOCAL CONDITIONS. (3) AS REQUIRED FOR TYPE OF CONSTRUCTION PROPOSED, WITH REGARD TO THE RECOMMENDATIONS PERTAINING TO SLOPES AND RECOVERY AREAS IN THE 1967 AASHO 'YELLOW BOOK', HIGHWAY DESIGN AND OPERATIONAL PRACTICES RELATED TO HIGHWAY SAFETY.

TO HIGHW

GENERALLY, STRUCTURES WILL BE FULL ROADWAY WIDTH (including shoulders), WITH EXCEPTIONS IN ACCORDANCE WITH AASHO STANDARDS.

5 THE DESIGN STANDARDS SHOWN ABOVE ARE INTENDED AS A GUIDE FOR PREPARING THE ESTIMATED COST FOR NEEDED IMPROVEMENTS IN CONJUNCTION WITH THIS STUDY. THEY ARE NOT INTENDED TO ESTABLISH THE CRITERIA FOR ANY PARTICULAR DESIGN SITUATION.

6 SEE TABLE A-3 FOR RAILROAD CROSSING CRITERIA

TABLE NO. A-2

URBAN DESIGN STANDARDS

Functional Systems	PRINCIPAL ARTERIAL STREETS	MINOR ARTERIAL STREETS	COLLECTOR STREETS							
Urbanized Areas Small Urban Urban-in-Rural	40 43 46	41 44 47	42 45 48							
Type of Area	Outlying Built-up Area Area	Outlying Built-up Area Area	All							
Design Speed (mph)	40 50	30 40	30							
Access Control	Partial	None	None							
Median Width	Minimum of 6 ft. on Prin turn bays are provided.	cipal Arterials. At least 1	6 ft. where left-							
Lane Width (ft.)	12	12	12							
Number of Travel Lanes	To be determ	ined by capacity analysi	s.							
Curb Parking Lanes	Where R/W is available, pasides. When parking is dele eled lanes.	arking lanes should be p ted, curbs to be set back	rovided on both 2 ft. from trav-							
Surface Type	Surfacing design to be determined by analysis; see Table A-5.									
Cross Section	Typical section shall includ drainage.	e curb and gutter, sidewal	ks, and enclosed							
Right-of-Way Width (ft.) ———	As necessary for type of contion to providing border st tial areas. See <i>A Policy or Streets</i> , 1973, AASHO "Reference of the set of	nstruction proposed, givir rips of 8 to 12 ft., partic a <i>Design of Urban Highw</i> ed Book."	ng due considera- ularly in residen- ays and Arterial							
Railroad Crossing Protection-		See Table A-3.								
Structures:										
Width	For structures less than 200 ft. in length, full approach cross see shall be carried on structure. Parking lanes shall be deleted on s tures over 200 ft. in length. Sidewalks provided in any case.									
Vertical Clearance (ft.) -	16	16	14							
Loading	HS 20-44	HS 20-44	HS 20-44							

Note

The design standards shown above are intended as a guide for estimating the cost of improvements in conjunction with this study. They are not intended to establish the criteria for any particular design situation.

TABLE NO. A-3

RAILROAD CROSSING PROTECTION CRITERIA

and the second se				
Functional System	Grade Separation	Flashing Lights with Gates	Flashing Lights	Reflectorized Signs and Crossbucks
RURAL				
Principal Arterial	(1) Exposure factors above 35,000 and on all fully controlled access routes	Exposure factors above 10,000 (2)	Exposure factors above 1,500 and all mainline tracks	All other crossings
Minor Arterial	Exposure factors above 35,000	Exposure factors above 10,000 (2)	Exposure factors above 1,500 for single main- line tracks	All other crossings
Collector		Exposure factors above 15,000 (2)	Exposure factors above 3,000 for single main- line tracks	All other crossings
Local —————		(2)	Exposure factors above 3,000 for single main- line tracks	All other crossings
URBAN			£	
Principal Arterial-	Exposure factors above 75,000 and on all fully controlled access routes	Exposure factors above 20,000 (2)	Exposure factors above 3,000 and all mainline tracks	All other crossings
Minor Arterial Street	Exposure factors above 75,000	Exposure factors above 20,000 (2)	Exposure factors above 3,000 for single main- line tracks	All other crossings
Collector Street –		Exposure factors above 30,000 (2)	Exposure factors above 5,000 for single main- line tracks	All other crossings
Local Street		(2)	Exposure factors above 5,000 for single main- line tracks	All other crossings

(1) Exposure factor is the product of the 1990 ADT times the number of trains.

(2) Flashing lights and gates should also be installed on multiple mainline tracks or where more than one train may occupy the crossing at the same time and on single tracks where train operating speeds are 70 mph or greater and sight distance is restricted.

Note

In those cases where grade separations were justified but not feasible because of physical limitations, grade separations were <u>not</u> estimated.

IABLE NO. AT

AVERAGE RURAL PAVEMENT DESIGNS FOR BASE & SURFACING COST ESTIMATE

A.D.T. Group	0 - 100	100 - 450	450 - 700	700 - 1400	1400 - 2800	2800+	
Design A.D.T. quiv. 18 ^K Wheel Load Traffic Index	100 2.33 5.2	450 10.50 6.0	700 16.34 6.2	1,400 32.68 6.8	2,100 49.01 7.0	3,200 74.69 7.4	
<pre>I Support Value = 5.0 Total Cover ighted Structural No.</pre>	1.20 1.95	1.40 2.05	1.45 2.40	1.55 2.80	1.65 3.00	1.75 3.20	
Coef.	Phick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.1	
ıg, Type 3 – 4.2 ype B – – – 1.7 be A – – – 1.7 Total Cover, S.N. valent Slab Thickness	.20 .84 .15 .26 <u>.60 1.02</u> .95 2.12 1.23	.20 .84 .15 .26 .75 <u>1.27</u> 1.10 2.37 1.39	.20 .84 .15 .26 .80 <u>1.36</u> 1.15 2.46 1.45	.25 1.05 .15 .26 <u>.90 1.53</u> 1.30 2.84 1.66	.30 1.26 .20 .34 .85 <u>1.45</u> 1.35 3.05 1.75	.35 1.4 .20 .3 .85 <u>1.4</u> 1.40 3.2	6 15 4 1
Support Value = 3.0 Total Cover ighted Structural No.	1.60 2.60	1.80 3.00	1.90	2.05 3.65	2.15 3.90	2.25	
Coef.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.1	
1g, Type 3 - 4.2 ype B 1.7 be A 1.7 Total Cover, S.N. valent Slab Thickness	.20 .84 .15 .26 . <u>95 1.62</u> 1.30 2.72 1.61	.20 .84 .15 .26 <u>1.15 1.95</u> 1.50 3.05 1.83	.25 1.05 .15 .26 <u>1.15 1.95</u> 1.55 3.26 1.93	.30 1.26 .20 .34 <u>1.20 2.04</u> 1.70 3.64 2.14	.30 1.26 .20 .34 <u>1.35</u> 2.30 1.85 3.90 2.31	.35 1.6 .20 .3 1.40 2.3 1.95 4.1 2.46	5 8 8 7
(Fer A.D.T. Group)		B. Serviceat	ility Index = 2	5.			

Procedure taken from Surfacing Design Procedure, Montana Department of Highways, July 1972.

Equivalent 18^K Wheel Load Factor = 223.4 per 1000

D.

% All Trucks = 20%
 3. Directional Factor = 0.50

Note

Regional Factor = 2.5

<u>ن</u>

A
0
Z
LE
В
\mathbf{A}
H

Ŷ

& SURFACING COST ESTIMATE AVERAGE URBAN PAVEMENT DESIGNS FOR BASE

	IIR	RANIZED AR	S V L		MATT TIDEAN		
				2			
	Principal Art.	Minor Art.	Collectors	Principal Art.	Minor Art.	Collectors	
1990 Average A.D.T. 1990 Design A.D.T. Equiv. 18 ^K Wheel Loading Traffic Index DSN	$10,337 \\12,000 \\130.10 \\7.8 \\40$	4,770 6,000 65.05 7.2 41	2,066 3,000 32.53 6.8 42	4,667 6,000 65.05 7.2 43&46	1,619 3,000 27.11 6.8 44&47	1,0971,50016.266.245&48	
COST AREA ONE: Average Soil Support Value = 5.0 R = 30 Design Requirements (Weighted Structural No.	1.80 3.43	1.70 3.10	1.60 2.62	1.70 3.10	1.60 2.80	1.45 2.40	
Item Coef.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N	
 Plant Mix Bituminous Surfacing, Type 3 – 4.2 Cr. Top Surfacing, Grade 3, Type B – – – 1.7 Cr. Base Course, Grade 5, Type A – – – 1.7 Total Cover, S.N. Equiv. Slab Thickness Relative Cost/Ft./Mile 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} .30 & 1.26\\ .20 & .34\\ .90 & 1.53\\ \overline{1.40} & \overline{3.13}\\ 1.81\\ 1.81\\ 1.762\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N 4 010
COST AREA TWO: Average Soil Support Value = 3.0 R = 10 Design Requirements (Weighted Structural No.	2.40 4.50	2.20 4.05	2.05 3.46	2.20 4.05	2.05 3.65	1.90 3.10	
Item Coef.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N.	Thick. S.N	
 Plant Mix Bituminous Surfacing, Type 3 – 4.2 Cr. Top Surfacing, Grade 3, Type B – – 1.7 Cr. Base Course, Grade 5, Type A – – 1.7 Total Cover, S.N. Equiv. Slab Thickness Relative Cost/Ft./Mile 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 4 MIN
 A. Traffic Data 1. % All Trucks = 10% 2. Directional Factor = .5 		B. ServiceabC. RegionalD. Equivaler	ility Index = 2 Factor = 2.5 nt 18 ^K Wheel I	.5 .oad Factor =]	180.7 per 1000]

A-6

Equivalent 18^K Wheel Load Factor = 180.7 per 1000

Procedure taken from Surfacing Design Procedure, Montana Department of Highways, July 1972

Note

0.20

49.0

48.7

Cost Area 1

Cost Area 2

0.35

0.35

51.9

51.3

0.85

1.40

64.0

70.0

Typical Section Quantities Per Mile

Course	(COST AREA	1	0	COST AREA	2
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume
a. Plant Mix _	16.3	27.322.3	3,187.6	16.2	27.154.3	3,168.0
b. Top Surf	10.1	29,626.5	1.975.1	10.0	29,334.0	1,955.6
c. Base Crse	49.3	34,026.7	9,640.9	84.9		16,602.7
d. Prime		29,626.5			29,334.0	
e. Tack		29,626.5			29,334.0	

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	118.4	182.5
2	Water Surface Courses	M. Gal.	537.2	858.3
3	Cr. Base Course, Grade 5, Type A	Ton	17,835.7	30,715.0
4	Cr. Top Surfacing, Grade 3, Type B	Ton	3,653.9	3,617.9
5	Plant Mix Bituminous Surfacing, Type 3	Ton	6,144.1	6,106.3
6	Mineral Filler	Ton	61.4	61.1
7	Asphalt Cement 120 - 150	Ton	399.4	396.9
8	Liquid Asphalt MC-70 (Prime)	Ton	37.8	37.4
9	Emulsified Asphalt SS-1 (Tack)	Gal.	2,962.6	2,933.4
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	L.F.		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

Typical Section Quantities Per Mile

45.3

1.40

42.7

58.0

64.0

Cost Area 1

Cost Area 2

0.35

0.35

Course	(COST AREA	1	(COST AREA	2
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume
a. Plant Mix _	28.4	47,604.0	5,553.8	28.2	47,268.0	5,514.6
b. Top Surf	17.8	52,212.0	3,480.0	17.6	51,627.0	3,441.8
c. Base Crse.	88.4	61,013.6	17,287.2	153.0	64,114.2	29,920.0
d. Prime		52,212.0			51,627.0	
e. Tack		52,212.0			51,627.0	

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	211.4	327.6
2	Water Surface Courses	M. Gal.	960.6	1,543.0
3	Cr. Base Course, Grade 5, Type A	Ton	31,981.4	55,352.0
4	Cr. Top Surfacing, Grade 3, Type B	Ton	6,439.4	6,367.4
5	Plant Mix Bituminous Surfacing, Type 3	Ton	10,705.0	10,629.4
6	Mineral Filler	Ton	107.0	106.3
7	Asphalt Cement 120 - 150	Ton	695.8	691.0
8	Liquid Asphalt MC-70 (Prime)	Ton	66.6	65.8
9	Emulsified Asphalt SS-1 (Tack)	Gal.	5,221.2	5,162.6
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	L.F.		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

Ŧ	vnic	a1 S	Sect	ion	Ouan	tities	Per	Mile
- L.	VUIL				Vuan	LILICO		TATIC

89.3

86.7

1.40

108.0

0.35

Cost Area 2

C		COST AREA	1	0	OST AREA	2
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume
a. Plant Mix _	29.6	49,614.9	5,788.4	29.5	49,447.7	5,768.9
b. Top Surf	17.7	51,919.5	3,461.3	17.6	51,627.0	3,441.8
c. Base Crse	81.6	56,319.9	15,957.3	138.1	57,870.4	27,006.2
d. Prime		51,919.5			51,627.0	
e. Tack		51,919.5			51,627.0	

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	198.8	300.7
2	Water Surface Courses	M. Gal.	898.1	1,408.2
3	Cr. Base Course, Grade 5, Type A	Ton	29,521.0	49,961.5
4	Cr. Top Surfacing, Grade 3, Type B	Ton	6,403.4	6,367.3
5	Plant Mix Bituminous Surfacing, Type 3	Ton	11,157.2	11,119.6
6	Mineral Filler	Ton	111.6	111.2
7	Asphalt Cement 120 - 150	Ton	725.2	722.8
8	Liquid Asphalt MC-70 (Prime)	Ton	66.2	65.8
9	Emulsified Asphalt SS-1 (Tack)	Gal.	5,191.9	5,162.7
10	Median Guard Rail, Concrete Pre-Cast	L.F.	5,280.0	5,280.0
11	Median Curb	L.F.		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

A-10

Typical Section Quantities Per Mile

Course	(COST AREA	1	(COST AREA	2
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume
a. Plant Mix	12.6	24,640.0	2,640.0	12.6	24,640.0	2,640.0
b. Top Surf	9.1	26,694.0	1,779.6	9.1	26,694.0	1,779.6
c. Base Crse.	44.5	30,713.6	8,702.2	76.3	33,157.6	14,920.9
d. Prime		26,694.0			26,694.0	
e. Tack _		26,694.0			26,694.0	

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	106.8	164.4
2	Water Surface Courses	M. Gal.	484.8	772.4
3	Cr. Base Course, Grade 5, Type A	Ton	16,099.1	27,603.7
4	Cr. Top Surfacing, Grade 3, Type B	Ton	3,292.3	3,292.3
5	Plant Mix Bituminous Surfacing, Type 3	Ton	4,749.4	4,749.4
6	Mineral Filler	Ton	47.5	47.5
7	Asphalt Cement 120 - 150	Ton	308.7	308.7
8	Liquid Asphalt MC-70 (Prime)	Ton	34.0	34.0
9	Emulsified Asphalt SS-1 (Tack)	Gal.	2,669.4	2,669.4
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	<u> </u>		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

Trustant	Castian	Ouentities	Dom	Mila
Vpical	Section	Quantities	Per	Mile

43.1

40.2

0.30

Cost Area 2

1.20

60.0

Course		COST AREA	1	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	9.4	22,058.4	1,838.2	11.4	22,293.0	2,229.3	
b. Top Surf	6.1	23,858.0	1,192.9	8.3	24,346.5	1,623.1	
c. Base Crse	43.0	28,029.7	8,408.9	61.9	30,262.2	12,104.9	
d. Prime		23,858.0			24,346.5		
e. Tack		23,858.0			24,346.5		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	95.4	136.0
2	Water Surface Courses	M. Gal.	444.1	634.9
3	Cr. Base Course, Grade 5, Type A	Ton	15,556.5	22,394.1
4	Cr. Top Surfacing, Grade 3, Type B	Ton	2,206.9	3,002.7
5	Plant Mix Bituminous Surfacing, Type 3	Ton	3,543.1	4,297.0
6	Mineral Filler	Ton	35.4	43.0
7	Asphalt Cement 120 - 150	Ton	230.3	279.3
8	Liquid Asphalt MC-70 (Prime)	Ton		31.0
9	Emulsified Asphalt SS-1 (Tack)	Gal.	2,385.8	2,434.6
10	Median Guard Rail, Concrete Pre-Cast	<u>L.F.</u>		
11	Median Curb	L.F		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

	Plant Mix		Top Surf.		Base Crse.	
	а	A	b	B	С	C
Cost Area 1	0.25	37.5	0.15	39.5	0.90	52.0
Cost Area 2	0.30	38.2	0.20	41.1	1.20	58.0
)

Typical Section Quantities Per Mile

Course	(COST AREA	1	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	8,9	20,884.8	1,740.4	10.80	21,120.0	2,112.0	
b. Top Surf	5.8	22,684.0	1,134.2	7.90	23,173.5	1,544.9	
c. Base Crse.	41.2	26,856.3	8,056.9	59.5	29,089.0	11,635.6	
d. Prime		22,684.0			23,173.5		
e. Tack		22,684.0			23,173.5		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	91.3	130.5
2	Water Surface Courses	M. Gal.	425.1	609.6
3	Cr. Base Course, Grade 5, Type A	Ton	14,905.3	21,525.9
4	Cr. Top Surfacing, Grade 3, Type B	Ton	2,098.3	2,858.1
5	Plant Mix Bituminous Surfacing, Type 3	Ton	3,354.6	4,070.9
6	Mineral Filler	Ton	33.5	40.7
7	Asphalt Cement 120 - 150	Ton	218.0	264.6
8	Liquid Asphalt MC-70 (Prime)	Ton	28.9	29.5
9	Emulsified Asphalt SS-1 (Tack)	Gal.	2,268.4	2,317.3
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	L.F.		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

	Plant Mix		Top Surf.		Base Crse.	
	a	A	b	B	с	C
Cost Area 1	0.20	32.8	0.15	34.9	0.80	46.0
Cost Area 2	0.25	33.5	0.15	35.7	1.15	52.0

Typical Section Quantities Per Mile

Course		COST AREA	l .	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	6.3	18,480.0	1,232.0	7,9	18,538.8	1,544.9	
b. Top Surf	5.1	19,946.0	997.3	5.2	20,338.0	1,016.9	
c. Base Crse	32.4	· 23,760.0	6,336.0	50.4	25,711.3	9,856.0	
d. Prime		19,946.0			20,338.0		
e. Tack		19,946.0			20,338.0		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	73.4	106.2
2	Water Surface Courses	M. Gal.	339.2	502.9
3	Cr. Base Course, Grade 5, Type A	Ton	11,721.6	18,233.6
4	Cr. Top Surfacing, Grade 3, Type B	Ton	1,845.0	1,881.3
5	Plant Mix Bituminous Surfacing, Type 3	Ton	2,374.7	2,977.8
6	Mineral Filler	Ton	23.7	29.8
7	Asphalt Cement 120 - 150	Ton	154.4	193.6
8	Liquid Asphalt MC-70 (Prime)	Ton	25.4	25.9
9	Emulsified Asphalt SS-1 (Tack)	Gal.	1,994.6	2,033.8
10	Median Guard Rail, Concrete Pre-Cast	<u> </u>		
11	Median Curb	L.F		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

Typical Section Quantities Per Mile

-		COST AREA	1	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	5.9	17,307.0	1,153.8	7.4	17,365.2	1,447.1	
b. Top Surf.	4.8	18,774.0	938.7	4.9	19,164.0	958.2	
c. Base Crse.	30.8	22,586.6	6,023.1	48.1	24,537.9	9,406.2	
d. Prime		18,774.0			19,164.0		
e. Tack		18,774.0			19,164.0		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	69.6	101.2
2	Water Surface Courses	M. Gal.	322.0	479.4
3	Cr. Base Course, Grade 5, Type A	Ton	11,142.7	17,401.5
4	Cr. Top Surfacing, Grade 3, Type B	Ton	1,736.6	1,772.7
5	Plant Mix Bituminous Surfacing, Type 3	Ton	2,223.9	2,789.3
6	Mineral Filler	Ton	22.2	27.9
7	Asphalt Cement 120 - 150	Ton	144.6	181.3
8	Liquid Asphalt MC-70 (Prime)	Ton	23.9	24.4
9	Emulsified Asphalt SS-1 (Tack)	Gal.	1,877.4	1,916.4
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	L.F.		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		
MONTANA HIGHWAY FUNCTIONAL CLASSIFICATION & NEEDS STUDY - 1974 UPDATE Design Std. No.s 7, 8, 9; 25, 26, 27 Dwg. No. 9 ADT Group 100 - 450 Pavement Design No. 2 FAS C B A 28' 2' 12' 12' 12' 2' a = Plant Mix Bit. Surfacing Type 3 b = Cr. Top Curfacing, Grade 3, Type B

-c = Cr. Base Course, Grade 5, Type A

Typical Section Dimensions

	Plant Mix		Top	Surf.	Base Crse.	
	a	A	b	<u> </u>	С	C
Cost Area 1	0.20	30.9	0.15	33.1	0.75	44.0
Cost Area 2	0.20	30.7	0.15	32.7	1.15	48.0

Typical Section Quantities Per Mile

Course		COST AREA	1	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	5.9	17.307.0	1,153.8	5.9	17,307.0	1,153.8	
b. Top Surf	4.8		938.7	4.8	18,774.0	938.7	
c. Base Crse	28.9	22,606.4	5,651.6	46.4	23,670.8	9,073.8	
d. Prime		18,774.0			18,774.0		
e Tack		18,774.0			18,774.0		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	66.2	97.8
2	Water Surface Courses	M. Gal.	304.8	463.1
3	Cr. Base Course, Grade 5, Type A	Ton	10,455.5	16,786.5
4	Cr. Top Surfacing, Grade 3, Type B	Ton	1,736.6	1,736.6
5	Plant Mix Bituminous Surfacing, Type 3	Ton	2,223.9	2,223.9
6	Mineral Filler	Ton	22.2	22.2
7_	Asphalt Cement 120 - 150	Ton	144.6	144.6
8	Liquid Asphalt MC-70 (Prime)	Ton	23.9	23.9
9	Emulsified Asphalt SS-1 (Tack)	Gal.	1,877.4	1,877.4
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	<u> </u>		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

A-15

	Plant Mix		Тор	Surf.	Base Crse.	
	a	A	b	<u> </u>	c	С
Cost Area 1	0.20	30.5	0.15	32.4	0.60	40.0
Cost Area 2	0.20	30.8	0.15	32.8	0.95	46.0

Typical Section Quantities Per Mile

Causa	(COST AREA	1	COST AREA 2				
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume		
a. Plant Mix	5.8	17.013.0	1,134.2	5.9	17.307.0	1,153.8		
b. Top Surf	4.7	18.382.0	919.1	4.8		938.7		
c. Base Crse.	21.7	<u>· 21.218.0</u>	4,243.6	37.4	23,096.2	7,313.8		
d. Prime		18,382.0			18,774.0			
e. Tack		18,382.0			18,774.0			

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	52.9	81.5
2	Water Surface Courses	M. Gal.	238.8	381.7
3	Cr. Base Course, Grade 5, Type A	Ton	7,850.7	13,530.5
4	Cr. Top Surfacing, Grade 3, Type B	Ton	1,700.3	1,736.6
5	Plant Mix Bituminous Surfacing, Type 3	Ton	2,186.2	2,223.9
6	Mineral Filler	Ton	21.9	22.2
7	Asphalt Cement 120 - 150	Ton	142.1	144.6
8	Liquid Asphalt MC-70 (Prime)	Ton	23.4	23.9
9	Emulsified Asphalt SS-1 (Tack)	Gal.	1,838.2	1,877.4
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	L.F.		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

A-16

MONTANA HIGHWAY FUNCTIONAL CLASSIFICATION & NEEDS STUDY - 1974 UPDATE	
Design Std. No.s 22, 23, 24	Dwg. No. <u>11</u>
ADT Group 0100 Pavement Design No. 1	FAS
C A $26'$ $12'$ $12'$ $12'$ $4 = Plant Mix Bit. Surfacing Type 3$ $b = Cr. Top Curfacing, Grade 3, Type B$ $c = Cr. Base Course, Grade 5, Type A$ Typical Section Dimensions	

Plant Mix Top Surf. Base Crse. b В а Α С С 28.5 0.15 0.60 Cost Area 1 0.20 30.4 38.0 Cost Area 2 0.20 28.8 0.15 30.8 0.95 44.0

Typical Section Quantities Per Mile

Course	(COST AREA	1	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	5.4	15,840.0	1,056.0	5.5	16,134.0	1,075.6	
b. Top Surf	4.4	17,208.0	860.4	4.5	17,600.0	880.0	
c. Base Crse.	20.5	20,044.5	4,008.9	35.5	21,922.7	6,942.2	
d. Prime		17,208.0			17,600.0		
e. Tack		17,208.0			17,600.0		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	49.0	77.2
2	Water Surface Courses	M. Gal.	225.2	361.8
3	Cr. Base Course, Grade 5, Type A	Ton	7,416.5	12,843.1
4	Cr. Top Surfacing, Grade 3, Type B	Ton	1,591.7	1,628.0
5	Plant Mix Bituminous Surfacing, Type 3	Ton	2,035.4	2,073.2
6	Mineral Filler	Ton	20.4	20.7
7	Asphalt Cement 120 - 150	Ton	132.3	134.8
_8	Liquid Asphalt MC-70 (Prime)	Ton	21.9	22.4
9	Emulsified Asphalt SS-1 (Tack)	Gal.	1,720.8	1,760.0
10	Median Guard Rail, Concrete Pre-Cast	L.F.		
11	Median Curb	L.F.		
12	Concr. Curb and Gutter	L.F.		
13	Sidewalks	Sq. Ft.		

Typical Section Quantities Per Mile

0.25

0.25

41

41

0.90

1.50

45

45

41

41

Cost Area 1

Cost Area 2

0.35

0.35

		Contraction of the local division of the loc					
Course	(COST AREA	1	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	14.4_S.F	24,137.1 S.Y.	2,816.0 C.Y.	<u>14.4 S.F.</u>	<u>24,137.1 S.Y.</u>	2,816.0 C.Y.	
b. Top Surf	10.3 S.F.	<u>24,137.1 S.Y.</u>	2,014.2 C.Y.	10.3 S.F.	24,137.1 S.Y.	2,014.2 C.Y.	
c. Base Crse.	40.5 S.F.	26,400.0 S.Y.	7,920.0 C.Y.	67.5 S.F.	26,400.0 S.Y.	13,200.0 C.Y.	
d. Prime		24,137.1 S.Y.			24,137.1 S.Y.		
e. Tack		24,137.1 S.Y.			24,137.1 S.Y.		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	103.1	151.9
2	Water Surface Courses	M. Gal.	459.5	703.7
3	Cr. Base Course, Grade 5, Type A	Ton	14,652.0	24,420.0
4	Cr. Top Surfacing, Grade 3, Type B	Ton	3,726.3	3,726.3
5	Plant Mix Bituminous Surfacing, Type 3	Ton	5,427.8	5,427.8
6	Mineral Filler	Ton	54.3	54.3
7	Asphalt Cement 120 - 150	Ton	352.8	352.8
8	Liquid Asphalt MC-70 (Prime)	Ton	30.8	30.8
9	Emulsified Asphalt SS-1 (Tack)	Gal.	2,413.7	2,413.7
10	Median Guard Rail, Concrete Pre-Cast	L.F.	0	0
11	Median Curb	L.F.	0	0
12	Concr. Curb and Gutter	L.F.	9,800.0	9,800.0
13	Sidewalks	Sq. Ft.	4,880.0	4,880.0

A-18

Typical Section Quantities Per Mile

Course	(COST AREA	1	COST AREA 2			
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume	
a. Plant Mix _	<u>26.3 S.F.</u>	44,083.7 S.Y.	5.143.1 C.Y.	<u>26.3 S.F.</u>	<u>44,083.7 S.Y</u> .	<u>5,143.1 C.Y.</u>	
b. Top Surf	<u>18.8 S.F.</u>	<u>44,083.7 S.Y.</u>	<u>3.676.4 C.Y.</u>	<u>18.8 S.F.</u>	<u>44,083.7 S.Y.</u>	<u>_3,676.4 C.Y.</u>	
c. Base Crse		<u>46,346.7 S.Y.</u>	<u>13,904.0 C.Y.</u>	<u>118.5 S.F.</u>	<u>46,346.6 S.Y.</u>	23,173.3 C.Y.	
d. Prime		44.083.7 S.Y.			<u>44,083.7 S.Y.</u>		
e. Tack		44,083.7 S.Y.			44,083.7 S.Y.		

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	183.0	268.8
2	Water Surface Courses	M. Gal.	813.1	1,241.8
3	Cr. Base Course, Grade 5, Type A	Ton	25,722.4	42,870.6
4	Cr. Top Surfacing, Grade 3, Type B	Ton	6,801.3	6,801.3
5	Plant Mix Bituminous Surfacing, Type 3	Ton	9,913.3	9,913.3
6	Mineral Filler	Ton	99.1	99.1
7_	Asphalt Cement 120 - 150	Ton	644.4	644.4
8	Liquid Asphalt MC-70 (Prime)	<u> </u>	56.2	56.2
9	Emulsified Asphalt SS-1 (Tack)	Gal.	4,408.4	4,408.4
10	Median Guard Rail, Concrete Pre-Cast	L.F.	0	0
11	Median Curb	L.F.	0	0
12	Concr. Curb and Gutter	L.F.	9,800.0	9,800.0
13	Sidewalks	Sq. Ft.	4,880.0	4,880.0

A-19

A-20

Course	(COST AREA	1	COST AREA 2					
Course	End Area	Surf. Area	Volume	End Area	Surf. Area	Volume			
a. Plant Mix _	29.8 S.F.	49,950.9 S .Y.	5,827.6 C.Y.	29.8 S.F.	<u>49,950.9 S.Y.</u>	5,827.6 C.Y.			
b. Top Surf	<u>21.3 S.F.</u>	<u>44,950.9 S.Y.</u>	4,165.3 C.Y.	<u>21.3 S.F.</u>	<u>49,950.9 S.Y.</u>	4,165.3 C.Y.			
c. Base Crse.	80.1 S.F.	<u>52,213.3 S.Y.</u>	<u>15,664.0 C.Y.</u>	133.5 S.F.	<u>52,213.4 S.Y.</u>	26,106.7 C.Y.			
d. Prime		<u>49,950.9 S.Y.</u>			49,950.9 S.Y.				
e. Tack		49,950.9 S.Y.			49,950.9 S .Y.				

Base & Surfacing Quantities Per Mile

No.	Item	Unit	Cost Area 1 Quantity/Mi.	Cost Area 2 Quantity/Mi.
1	Rolling Surface Courses	Unit	206.5	303.1
2	Water Surface Courses	M. Gal.	917.1	1,400.1
3	Cr. Base Course, Grade 5, Type A	Ton	28,978.4	48,297.4
4	Cr. Top Surfacing, Grade 3, Type B	Ton	7,705.8	7,705.8
5	Plant Mix Bituminous Surfacing, Type 3	Ton	11,232.7	11,232.7
6	Mineral Filler	Ton	<u>112.3</u>	112.3
7	Asphalt Cement 120 - 150	Ton	730.1	730.1
8	Liquid Asphalt MC-70 (Prime)	Ton	63.7	63.7
9	Emulsified Asphalt SS-1 (Tack)	Gal.	4,995.1	4,995.1
10	Median Guard Rail, Concrete Pre-Cast	L.F.	0	0
11	Median Curb	L.F.	9,200.0	9,200.0
12	Concr. Curb and Gutter	L.F.	9,800.0	9,800.0
13	Sidewalks	Sq. Ft.	4,880.0	4,880.0

M	ONTANA H	HIGHWAY FU	NCTIONAL CLASS	SIFICATION & NI	EEDS STUDY - 19	974 UPDATE		
((Gravel Lo	cal Roads	& Gravel Mino	r Collectors)				
		3		40.0	' & 44 0'			
	30.7'							
	24'							
				0.5	50' Cr. Top Su	rf.		
				(1.0	0' Select Surf	. (Cost Area 1))	
		1 .	End Areas: Sa	Et	Volumes: CN	/ Mile I	Tons / M	
	Cost Ar	ea→		2		2	1	2
	Top Sur	·f.	13.7	13.7	2.679.1	2.679.1	4.956.3	4,956.3
Select Surf. 24.7 37.3			37.3	4,830.2	7,294.2	8,935.9	13,494.3	
'		1	1	1	1	1	1	
	Costs Per	Mile						
	I			DST AREA O			I U I D I	WU
<u>No.</u>	I	tem	Quant./Mile	Unit Price	<u>Cost/Mile</u>	Quant./Mile	Unit Price	
	Kolling	Units	84.3		1,197.90	107.1	2.00	1,369.81
2	Cr. Tor	M.Gal.	4 956 3	2.09	11 408 62	401.3	2 33	11 548 18
1	Select S	urf Ton	8.935.9	1.26	11,259.23	13.494.3	1.20	16,193.16
5.	Binder	C.Y.	144.1	1.42	204.62	144.1	1.38	198.86
6.	Haul Bi	nder Mi-Ya.	288.2	0.18	51.88	288.2	0.16	46.11
				Sub-total	25,146		Sub-total –	- 30,781
				+ 10% Eng	2,515		+ 10% Eng.	- <u>3,078</u>
				Total	27,661		Total	- <u>33,860</u>

APPENDIX B

UNIT AND PER-MILE COSTS

APPENDIX B

I.	Uni	t and Per-Mile Costs	
	A.	Cost Areas`	B-1
	B.	Five-year Cost Data Analysis —————————————————————	B-1
	C.	Annual Construction Cost Indicies	B-1
	D.	Development of Average Costs Per Mile	B-3
		(1) Rural Cost Analysis Categories	B-3
		(2) Urban Cost Analysis Categories	B-3
		(3) "Basic" Costs Per Mile	B-4
		(4) Costs Per Mile: Base and Surfacing	B-4
		(5) Expanding "Basic" Costs to Design Standard Numbers	B-5
	E.	Type of Improvement	B-8
	F.	Right-of-Way Costs Per Mile	B- 9
	G.	Structure Costs	B-10
	H.	Summary	B-10

Figure No. B-1:	Cost Areas	B- 2
Figure No. B-2:	Take-off Worksheet	B-5
Figure No. B-3:	Base and Surfacing Project Take-off	B- 6

Table No. B-1:	Annual Construction Cost Indicies	B-3
Table No. B-2:	Rural Right-of-Way "Take"	B-9
Table No. B-3:	Rural Construction Cost Summary No. 1 - Cost Area One	B-11
Table No. B-4:	Rural Construction Cost Summary No. 1 - Cost Area Two	B-12
Table No. B-5:	Rural Construction Cost Summary No. 2 - Widening	B-13
Table No. B-6:	Rural Right-of-Way Cost Summary - Reconstruction & Widening, Rural	B-14
Table No. B-7:	Rural Right-of-Way Cost Summary - New Location, Rural	B-15
Table No. B-8:	Rural Right-of-Way Cost Summary - New Location, Dense	B-16
Table No. B-9:	Rural Right-of-Way Cost Summary - Reconstruction & Widening, Dense	B-17
Table No. B-10:	Urban Cost Summary No. 1	B-18
Table No. B-11:	Urban Cost Summary No. 2	B-19

Page

.

I. UNIT AND PER-MILE COSTS

A. Cost Areas

Upon examining the additional cost data used in the 1974 Update, it was found that the same basic relationship still prevailed between costs in the two cost areas that did when they were established for the 1970-1990 Study. As such, the cost areas remained unchanged and are shown in Figure B-1.

B. Five-Year Cost Data Analysis

It was originally planned to base the 1974 Update cost analysis on historical data taken from state projects let during 1971 and 1972. However, it was found upon examining this data, that sufficient projects were not available from these two years to fill the various categories required by the analysis. It was therefore decided that, by applying appropriate annual construction cost indicies to data taken from projects let in the years 1968 through 1972, sufficient projects would be available to develop costs directly for each category required. This also eliminated the need for the complex index system used to fill the required categories in the 1970-1990 Study.

C. Annual Construction Cost Indicies

Individual construction cost indicies were computed for each of the years 1968 through 1972 and for each of the construction classifications: (1) grading, (2) drainage, (3) base and surfacing, and (4) all "other" costs not included in (1) through (3). These indicies were computed using the *Tabulation of Low Bid Prices and Computation of Average Prices* (MDH) for each of the five years according to the following procedure:

- The quantities and average unit prices were listed for every construction cost item that appeared exactly the same in each of the five tabulations. (Apparent one-bid items were omitted.)
- (2) The total quantity for the five-year period was obtained for each item and divided to produce an average annual quantity.
- (3) This average annual quantity for each construction cost item was multiplied by the average unit price per item from each of the five years and the results summed to produce the "total cost" for each year based on the same set of quantities. This was done for each of the construction classifications listed above.
- (4) These "total costs" were then tabulated and indexed with 1971 being the base year as follows:

FIGURE NO. B-1

COST AREAS

B-2

INDLL NO. D-I	TA	BL	Æ	NO.	B-1
---------------	----	----	---	-----	-----

Construction Classification	1968	1969	1970	1971	1972
Grading ————	3,844,012	4,476,069	5,901,384	6,103,087	6,235,639 Total Cost
	1.5876	1.3634	1.0341	1.0000	0.9787 Index
Drainage	2,776,968	2,978,008	3,151,107	3,367,750	3,481,639 Total Cost
	1.2127	1.1308	1.0687	1.0000	0.9672 Index
Base & Surface –	9,826,998	9,818,463	11,062,959	12,596,648	10,863,100 Total Cost
	1.2818	1.2830	1.1386	1.0000	1.1596 Index
"Other"	1,714,342	2,126,448	2,142,862	2,361,453	2,206,872 Total Cost
	1.3774	1.1105	1.1020	1.0000	1.0700 Index
Combined	18,162,320	19,398,988	22,258,312	24,428,938	22,787,250 Total Cost
	1.3450	1.2593	1.0975	1.0000	1.0720 Index

ANNUAL CONSTRUCTION COST INDICIES

The above indicies were used to factor all cost data taken from projects let in years other than 1971 in order that all data used was representative of the cost level of that year. It should be noted that although the needs analysis period was recently extended two years, and owing to the fact that the construction years 1972 and 1973 experienced an unusual drop in construction costs, the 1971 price level is more representative of the new cut-off date of this study. This is especially true because the decreasing price trend is expected to take a rapid turn in the opposite direction.

D. Development of Average Costs Per Mile

(1) Rural Cost Analysis Categories

The five-year historical cost data from all applicable rural projects was divided into the following categories to become the basis for the desired costs per mile:

Cost Areas (previously described)

Federal-Aid Project Classification (F.A.l., F.A.P., F.A.S.)

Terrain Classification (Flat, Rolling, Mountainous)

(2) Urban Cost Analysis Categories

The five-year historical data from urban projects done by the state, plus a number of municipal projects from various cities, were divided into the following categories for use in developing the desired urban cost per mile:

> Urbanized Areas (Great Falls, Billings, Missoula) Small Urban (by population group) Urban-in-Rural (populations less than 5,000)

(3) "Basic" Costs Per Mile: Grade & Drain, "Other"

Having assembled the historical data into the categories described above, the detail estimates for each project were examined as follows:

- (a) All items classified as Grading were summed to determine their cost per mile.
- (b) All items classified as Drainage were summed to determine their cost per mile. Note: Grading and Drainage costs were taken off separately because of their individual construction cost indicies but were then combined into a single cost per mile for Grade and Drain.
- (c) All items classified as Base and Surfacing were listed on a separate worksheet for use in the unit price analysis to be explained later.
- (d) All items not classified under (a), (b), or (c) were summed to determine their cost per mile.
- (e) Because many projects did not include seeding, a separate take-off was made when possible and the resulting cost per mile added to the cost per mile for "Other".

Typical worksheets for the above procedure have been included as Figures B-2 and B-3, and were the same for both rural and urban projects. Having completed worksheets for all projects available, the total cost for all projects in each analysis category (Paragraphs D-1 and D-2) were divided by the corresponding number of total miles to obtain the average cost per mile for each category. These "Basic" costs per mile were then expanded to fit the various design standard numbers. This final procedure is explained later.

(4) Costs Per Mile: Base and Surfacing

Using the Base and Surfacing Project Take-off Sheets (Figure B-3), and working within the analysis categories, average unit prices were computed for each of the items listed on the typical sections (Appendix A). These average unit prices, together with the quantities from the typical sections, produced the desired cost per mile for Base and Surfacing for each required design standard number.

(5) Expanding "Basic" Costs to Design Standard Numbers (DSN's)

The following outline explains how the "Basic" costs per mile from each of the cost analysis categories were correlated to the various design standard numbers.

(a) Cost Areas

All rural costs were developed separately within each of the two cost areas. The only case where cost areas entered into the urban cost analysis was where small urban and urban-in-rural areas were concerned. Further, this distinction could only be made in the costs per mile for Base and Surfacing.

FIGURE NO. B-2

PROJECT TAKE-OFF

Proj	ect No.					Date:
Fun	ctional Classification			Lanes		Cost Area
Wor	·k:					
Teri	rain Classification					
Tota	al Excav	CY. Length		M1. Exc./M1		CY/M1. Terrain
		(Grade	& Drain Costs		
				lndex		1971 Price
(1)	Grading & Related Total Cost					
	Length	Mi.				
	Cost/Mi.	/M1.	Х		=	
(2)	Drainage & Related Total Cost					
	Length	Mi. /Mi	v		=	
	COSt/MI	/ 1911.	Total	Cost/Mi: Cr & Dr	_	
			TOtal			
			·'O	ther" Costs		
(1)	General Items					
	Length	Mi.				
	Cost/Mi.	/Mi.	Х		=	
(2)	Fencing Total Cost					
	Length	Mi.				
	Cost/Mi.	/Mi.	Х		=	
(3)	Signing Total Cost					
	Length	Mi.				
	Cost/Mi.	/Mi.	Х		=	
(4)	Seeding*	/Mi.	Х		=	
			Total	Cost/Mi.: "Other"	=	
				Souding		
Tot	al Cost			Security		
Len	gth t/Mi	Mi. /Mi				
003		/ 1711.				

* Seeding costs have been averaged from typical projects.

FIGURE NO. B-3

BASE & SURFACING PROJECT TAKE-OFF

Project No							
Cost Area	F.A. Classification	Terrain					
Construction Year: 19	Cost Index						

Item Bid Prices

Item No.	Item	Unit	Bid Price	Equivalent 1971 Price
1	Rolling Surface Courses	Unit		
2	Water Surface Courses	M.Gal.		
3	Base Course, Gr. 5, Type A	Ton		
4	Top Surfacing, Gr. 3, Type B	Ton		
5	Plant Mix Bit. Surfacing, Type 3	Ton		
6	Mineral Filler	Ton		
7	Asphalt Cement 120-150	Ton		
8	Liquid Asphalt MC-70	Ton		
9	Emulsified Asphalt SS-1	Ton		
10	Median Guard Rail	L.F.		

(b) Federal-Aid Project Classifications to DSN's

The manner in which the "Basic" costs correspond to the DSN's may best be seen on the Rural Construction Cost Summaries (Tables B-3 through B-5). Briefly however:

F.A.I. project costs = All 4-lane DSN's.

F.A.P. project costs = All 2-lane Principal Arterials DSN's and all other DSN's where ADT is greater than 700.

F.A.S. project costs = All DSN's where ADT is less than 700 (except for Principal Arterials).

It was not possible to determine any distinction between project classifications where urban costs were concerned. Thus, two "Basic" costs per mile (2-lane and 4lane) were developed to apply to all urban DSN's. However, these costs were classified according to urban areas.

(c) Terrain Classification to DSN's

The question here is self-explanatory since each terrain classification carries its own DSN and they do not apply to urban DSN's.

- (d) Procedures: Grade & Drain and "Other"
 - 1. F.A.I. to DSN

The costs developed from rural F.A.I. projects in each cost area and terrain classification were applied directly to the corresponding 4-lane DSN's.

2. F.A.P. to DSN

The Grade and Drain costs developed from rural F.A.P. projects were divided by 36, the average roadway width of the projects used to develop the "Basic" costs per mile, and multiplied by the roadway width of each applicable DSN. The "Basic" costs developed for "Other" were applied directly with no distinction made for roadway width.

3. F.A.S. to DSN

The Grade and Drain costs developed from rural F.A.S. projects were divided by 28, the average roadway width of projects used to develop the costs, and multiplied by the roadway width of each applicable DSN. As above, the "Other" costs were applied without distinction for roadway width.

4. Urban Costs to DSN

The 2-lane urban costs were applied directly from the "Basic" cost per mile. The 4-lane costs were prorated from the "Basic" cost per mile according to the DSN template width.

E. Type of Improvement

The costs per mile developed for each DSN according to foregoing procedures were considered representative of the type of improvement classified as reconstruction. It then remained to expand these costs to represent the other improvement classifications as follows:

(1) New Location

The costs for new location were estimated from the reconstruction costs per mile according to the following schedule:

(a) Rural Grade & Drain and "Other"

Flat ------ New Location Cost = Reconstruction Cost x 1.1

Rolling ----- New Location Cost = Reconstruction Cost x 1.2

Mountainous -- New Location Cost = Reconstruction Cost x 1.3

(b) Urban Grade & Drain

New Location Grading = Reconstruction Grading

New Location Drainage = 1.5 x Reconstruction Drainage

(c) Urban "Other"

New Location "Other" = 1.1 x Reconstruction "Other"

The factors shown in the above schedule were derived by examining the amount of additional grading associated with reconstruction, the amount and cost of relocating salvable material, and the cost items which occur regardless of type of improvement.

(d) Urban and Rural Base and Surfacing

In all cases, the cost for base and surfacing was equal for both types of improvement.

(2) Widening

The costs for widening were computed in terms of W, the amount of widening required (as determined by the Needs Analysis), as follows:

(a) Rural and Urban Grade & Drain

Computed as a "W" multiplier equal to the cost/foot/mile from the reconstruction costs.

(b) Rural and Urban Base & Surfacing

Computed from the actual quantities required to provide a complete new riding surface plus sub-base under the widened portion only.

(c) Rural and Urban "Other"

It was assumed that all "Other" items associated with reconstruction would be equally applicable for widening projects. As such, the "Other" are equal for both types of improvements.

(3) Resurfacing

The costs for resurfacing were based on the quantities required to provide a 0.25' overlay on existing roadways over 30 feet wide and a 0.20' overlay on those under 30 feet.

F. Right-of-Way Costs Per Mile

The costs per mile for right-of-way acquisition and its related costs were computed using two factors: (1) the estimated unit cost for land including the costs associated with its acquisition, and (2) the amount of right-of-way required for each type of improvement. The first, costs, were provided by the Right-of-Way Division, MDH. The second, the required "take", was estimated according to the following schedule:

TABLE NO. B-2

RURAL RIGHT-OF-WAY "TAKE"

Type of Improvement	Desirable R/W	Average Existing R/W	Estimated "Take" Per Mile
New Location	288 Ft.	0	34.91 Acres
Reconstruction	288 Ft.	130 Ft.	19.15 Acres
New Location	160 Ft.	0	19.39 Acres
Reconstruction	160 Ft.	100 Ft.	7.27 Acres
New Location	130 Ft.	0	15.76 Acres
Reconstruction	130 Ft.	60 Ft.	8.48 Acres
	Type of Improvement New Location Reconstruction New Location Reconstruction Reconstruction	Type of ImprovementDesirable R/WNew Location Reconstruction288 Ft.New Location Reconstruction160 Ft.New Location Reconstruction130 Ft.New Location Reconstruction130 Ft.	Type of ImprovementDesirable R/WAverage Existing R/WNew Location Reconstruction288 Ft.0 130 Ft.New Location Reconstruction160 Ft.0 100 Ft.New Location Reconstruction130 Ft.0 60 Ft.

The desirable right-of-way shown above is based on slope and recovery area recommendations made in the 1967 AASHO *Yellow Book*. To allow for construction limits outside the above corridors, the following factors were applied for rolling and mountainous terrain:

- Rolling Terrain f = 1.070
- Mountainous Terrain f = 1.150

Widening and resurfacing improvements on rural sections were considered to require no additional right-of-way.

It was decided that all improvements in urban areas could (or might have to be) made on the existing right-of-way, except for new locations. It was also decided, however, that all improvements except resurfacing should include some cost for utility adjustments. These costs were found to be as variable as the number of projects examined. By eliminating all extreme cases, however, it was found that utility costs varied from 10 to 15 percent of the grading and drainage costs. Therefore, for urban reconstruction and widening improvements, 12 percent of the grade and drain costs were added under right-of-way. Right-of-way costs for urban new location improvements were computed directly from the "take" and unit cost figures supplied by the state.

G. Structure Costs

A current schedule of estimated costs per square foot for various type structures was provided by the Bridge Section, MDH. These were applied to derive the estimated costs for needed structure improvements in the following manner:

Structures up to 400' = \$22.00 per S.F. Structures 400' to 800' = \$30.00 per S.F. Structures over 800' = \$35.00 per S.F.

H. Summary

The foregoing procedures were developed and applied with a single purpose in mind; that being to compile a schedule of *average* costs per mile to be applied to the improvements determined as necessary by the needs analysis. In a study such as this, it is imperative that estimating costs be as closely representative of the actual costs *in the majority of the cases to which they are applied*. The accumulation and classification of the available historical data and its expansion to a form consistent with the needs analysis has been intended to accomplish this end. The resulting schedules of costs per mile are given in the following summaries.

RURAL CONSTRUCTION COST SUMMARY NO. 1

Cost Area One

	DESC	RIPTIO	N				NEW LO	CATION			RECONSTI	RUCTION	1		RESURF	ACING	
Functional Classification	Design Year ADT Group	D.S.N.	Lanes	Terrain	Proj. Equiv.	Grade & Drain	Surfacing	Other	Total	Grade & Drain	Surfacing	Other	Total	Građe & Drain	Surfacing	Other	Total
Principal Arterials	All	1 1 2 3 3	2 4 2 4 2 4	F F R M M	F.A.P. F.A.1. F.A.P. F.A.1. F.A.P. F.A.1.	113,131 242,408 218,185 462,737 295,664 681,523	117,282 173,035 117,282 173,035 117,282 210,034	25,743 43,900 34,300 50,483 52,353 76,552	256,156 459,343 369,767 686,255 465,299 968,109	102,848 220,371 181,820 385,615 227,435 524,248	117,282 173,035 117,282 173,035 117,282 210,034	23,402 39,909 28,583 42,070 40,272 58,886	243,532 433,315 327,685 600,720 384,989 793,168	1,895 3,296 1,895 3,296 1,895 3,459	47,375 82,402 47,375 82,402 47,375 86,473	2,843 4,944 2,843 4,944 2,843 5,188	52,113 90,642 52,113 90,642 52,113 95,120
	0-100	4 5 6	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	64,956 130,229 192,864	49,629 49,629 49,629	18,533 22,969 35,867	133,118 202,827 278,360	59,051 108,524 148,356	49,629 49,629 49,629	16,849 19,141 27,590	125,529 177,294 225,575	961 961 961	24,026 24,026 24,026	1,442 1,442 1,442	26,429 26,429 26,429
	100-450	7 8 9	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	64,956 130,229 192,864	56,112 56,112 56,112	18,533 22,969 35,867	139,601 209,310 284,843	59,051 108,524 148,356	56,112 56,112 56,112	16,849 19,141 27,590	132,012 183,777 232,058	961 961 961	24,026 24,026 24,026	1,442 1,442 1,442	26,429 26,429 26,429
	450-700	10 11 12	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	69,596 139,531 192,864	61,131 61,131 57,668	18,533 22,969 35,867	149,260 223,631 286,399	63,269 116,276 148,356	61,131 61,131 57,668	16,849 19,141 27,590	141,249 196,548 233,614	1,027 1,027 961	25,680 25,680 24,026	1,541 1,541 1,442	28,248 28,248 26,429
Minor Arterials	700-1400	13 14 15	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	92,562 168,598 228,468	80,429 76,576 76,576	25,743 34,300 52,353	198,734 279,474 357,397	84,148 140,497 175,745	80,429 76,576 76,576	23,402 28,583 40,272	187,979 245,656 292,593	1,566 1,483 1,483	39,145 37,084 37,084	2,349 2,225 2,225	43,060 40,792 40,792
	1400-2800	16 17 18	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	102,847 198,350 268,786	97,647 97,647 97,647	25,743 34,300 52,353	226,237 330,297 418,786	93,498 165,291 206,759	97,647 97,647 97,647	23,402 28,583 40,272	214,547 291,521 344,678	1,730 1,730 1,730	43,260 43,260 43,260	2,596 2,596 2,596	47,586 47,586 47,586
	2800+	19 19 20 20 21 21	2 4 2 4 2 4	F F R M M	F.A.P. F.A.1. F.A.P. F.A.1. F.A.P. F.A.1.	113,131 242,408 218,185 462,737 295,664 681,523	117,282 173,035 117,282 173,035 117,282 210,034	25,743 43,900 34,300 50,483 52,353 76,552	256,156 459,343 369,767 686,255 465,299 968,109	102,848 220,371 181,820 385,615 227,435 524,248	117,282 173,035 117,282 173,035 117,282 210,034	23,402 39,909 28,583 42,070 40,272 58,886	243,532 433,315 327,685 600,720 384,989 793,168	1,895 3,296 1,895 3,296 1,895 3,459	47,375 82,402 47,375 82,402 47,375 86,473	2,843 4,944 2,843 4,944 2,843 5,188	52,113 90,642 52,113 90,642 52,113 95,120
	0-100	22 23 24	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	60,317 120,927 179,088	46,492 46,492 46,492	18,533 22,969 35,867	125,342 190,388 261,447	54,833 100,773 137,759	46,492 46,492 46,492	16,849 19,141 27,590	118,174 166,406 211,841	895 895 895	22,370 22,370 22,370	1,342 1,342 1,342	24,607 24,607 24,607
	100-450	25 26 27	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	64,956 130,229 192,864	56,112 56,112 56,112	18,533 22,969 35,867	139,601 209,310 284,843	59,051 108,524 148,356	56,112 56,112 56,112	16,849 19,141 27,590	132,012 183,777 232,058	961 961 961	24,026 24,026 24,026	1,442 1,442 1,442	26,429 26,429 26,429 26,429
Collectors	450-700	28 29 30	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	69,596 139,531 192,864	61,131 61,131 57,668	18,533 22,969 35,867	149,260 223,631 286,399	63,269 116,276 148,356	61,131 61,131 57,668	16,849 19,141 27,590	141,249 196,548 233,614	1,027 1,027 961	25,680 25,680 24,026	1,541 1,541 1,442	28,248 28,248 26,429
	700-1400	31 32 33	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	92,562 168,598 228,468	80,429 76,576 76,576	25,743 34,300 52,353	198,734 279,474 357,397	84,148 140,497 175,745	80,429 76,576 76,576	23,402 28,583 40,272	187,979 245,656 292,593	1,566 1,483 1,483	39,145 37,084 37,084	2,349 2,225 2,225	43,060 40,792 40,792
	1400-2800	34 35 36	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	102,847 198,350 268,786	97,647 97,647 97,647	25,743 34,300 52,353	226,237 330,297 418,786	93,498 165,291 206,759	97,647 97,647 97,647	23,402 28,583 40,272	214,547 291,521 344,678	1,730 1,730 1,730	43,260 43,260 43,260	2,596 2,596 2,596	47,586 47,586 47,586
	2800+	37 38 39	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	113,131 218,185 295,664	117,282 117,282 117,282	25,743 34,300 52,353	256,156 369,767 465,299	102,848 181,820 227,435	117,282 117,282 117,282	23,402 28,583 40,272	243,532 327,685 384,989	1,895 1,895 1,895	47,375 47,375 47,375 47,375	2,843 2,843 2,843	52,113 52,113 52,113

RURAL CONSTRUCTION COST SUMMARY NO. 1

Cost Area Two

.

	DESC	RIPTIO	N				NEW LO	CATION			RECONSTI	RUCTION	1		RESURF	ACING	
Functional Classification	Design Year ADT Group	D.S.N.	Lanes	Terrain	Proj. Equiv.	Grade & Drain	Surfacing	Other	Total	Grade & Drain	Surfacing	Other	Total	Grade & Drain	Surfacing	Other	Total
Principal Arterials	All	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \end{array} $	2 4 2 4 2 4	F F R M M	F.A.P. F.A.I. F.A.P. F.A.1. F.A.P. F.A.I.	112,675 180,073 147,598 336,266 184,563 568,663	137,011 193,279 137,011 193,279 137,011 226,133	22,870 31,571 31,593 39,830 51,500 64,671	272,556 404,923 316,202 569,375 373,074 859,467	102,432 163,703 122,997 280,222 141,971 437,433	137,011 193,279 137,011 193,279 137,011 226,133	20,790 28,701 26,328 33,192 39,616 49,746	260,233 385,683 286,336 506,693 318,598 713,312	1,844 3,207 1,844 3,207 1,844 3,366	46,101 80,183 46,101 80,183 46,101 84,154	2,766 4,811 2,766 4,811 2,766 5,049	50,711 88,201 50,711 88,201 50,711 92,569
	0-100	4 5 6	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	46,113 68,384 85,452	56,341 56,341 56,341	12,685 16,679 28,022	115,139 141,404 169,815	41,922 56,987 65,732	56,341 56,341 56,341	11,531 13,899 21,556	109,794 127,227 143,629	934 934 934	23,353 23,353 23,353	1,401 1,401 1,401	25,688 25,688 25,688
	100-450	7 8 9	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	46,113 68,384 85,452	63,025 63,025 63,025	12,685 16,679 28,022	121,823 148,088 176,499	41,922 56,987 65,732	63,025 63,025 63,025	11,531 13,899 21,556	116,478 133,911 150,313	934 934 934	23,353 23,353 23,353	1,401 1,401 1,401	25,688 25,688 25,688
	450-700	10 11 12	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	49,407 73,269 85,452	73,855 73,855 69,882	12,685 16,679 28,022	135,947 163,803 183,356	44,916 61,058 65,732	73,855 73,855 69,882	11,531 13,899 21,556	130,302 148,812 157,170	998 998 934	24,961 24,961 23,353	1,498 1,498 1,401	27,457 27,457 25,688
Minor Arterials	700-1400	13 14 15	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	92,189 114,053 142,617	99,768 95,189 95,189	22,870 31,593 51,500	214,827 240,835 289,306	83,808 95,043 109,705	99,768 95,189 95,189	20,790 26,328 39,616	204,366 216,560 244,510	1,524 1,443 1,443	38,090 36,085 36,085	2,285 2,165 2,165	41,899 39,693 39,693
	1400-2800	16 17 18	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	102,432 134,180 167,784	115,869 115,869 115,869	22,870 31,593 51,500	241,171 281,642 335,153	93,120 111,816 129,064	115,869 115,869 115,869	20,790 26,328 39,616	229,779 254,013 284,549	1,684 1,684 1,684	42,096 42,096 42,096	2,526 2,526 2,526	46,306 46,306 46,306
	2800+	19 19 20 20 21 21	2 4 2 4 2 4	F F R M M	F.A.P. F.A.I. F.A.P. F.A.1. F.A.P. F.A.1.	112,675 180,073 147,598 336,266 184,563 568,663	137,011 193,279 137,011 193,279 137,011 226,133	22,870 31,571 31,593 39,830 51,500 64,671	272,556 404,923 316,202 569,375 373,074 859,467	102,432 163,703 122,997 280,222 141,971 437,433	137,011 193,279 137,011 193,279 137,011 226,133	20,790 28,701 26,328 33,192 39,616 49,746	260,233 385,683 286,336 506,693 318,598 713,312	1,844 3,207 1,844 3,207 1,844 3,366	46,101 80,183 46,101 80,183 46,101 84,154	2,766 4,811 2,766 4,811 2,766 5,049	50,711 88,201 50,711 88,201 50,711 92,569
	0-100	22 23 24	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	42,819 63,500 79,349	53,031 53,031 53,031	12,685 16,679 28,022	108,535 133,210 160,402	38,927 52,917 61,037	53,031 53,031 53,031 53,031	11,531 13,899 21,556	103,489 119,847 135,624	870 870 870	21,744 21,744 21,744	1,305 1,305 1,305	23,919 23,919 23,919 23,919
	100-450	25 26 27	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	46,113 68,384 85,452	63,025 63,025 63,025	12,685 16,679 28,022	121,823 148,088 176,499	41,922 56,987 65,732	63,025 63,025 63,025	11,531 13,899 21,556	116,478 133,911 150,313	934 934 934	23,353 23,353 23,353 23,353	1,401 1,401 1,401	25,688 25,688 25,688
	450-700	28 29 30	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	49;407 73,269 85,452	73,855 73,855 69,882	12,685 16,679 28,022	135,947 163,803 183,356	44,916 61,058 65,732	73,855 73,855 69,882	11,531 13,899 21,556	130,302 148,812 157,170	998 998 934	24,961 24,961 23,353	1,498 1,498 1,401	27,457 27,457 25,688
Collectors	700-1400	31 32 33	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	92,189 114,053 142,617	99,768 95,189 95,189	22,870 31,593 51,500	214,827 240,835 289,306	83,808 95,043 109,705	99,768 95,189 95,189	20,790 26,328 39,616	204,366 216,560 244,510	1,524 1,443 1,443	38,090 36,085 36,085	2,285 2,165 2,165	41,899 39,693 39,693
	1400-2800	34 35 36	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	102,432 134,180 167,784	115,869 115,869 115,869	22,870 31,593 51,500	241,171 281,642 335,153	93,120 111,816 129,064	115,869 115,869 115,869	20,790 26,328 39,616	229,779 254,013 284,549	1,684 1,684 1,684	42,096 42,096 42,096	2,526 2,526 2,526	46,306 46,306 46,306
	2800+	37 38 39	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	112,675 147,598 184,563	137,011 137,011 137,011	22,870 31,593 51,500	272,556 316,202 373,074	102,432 122,997 141,971	137,011 137,011 137,011	20,790 26,328 39,616	260,233 286,336 318,598	1,844 1,844 1,844	46,101 46,101 46,101	2,766 2,766 2,766	50,711 50,711 50,711

•

RURAL CONSTRUCTION COST SUMMARY NO. 2

WIDENING

	DESC	RIPTIO	N				COST AREA ONE			COST AREA TWO	
Functional Classification	Design Year ADT Group	D.S.N.	Lanes	Terrain	Proj. Equiv.	Grade & Drain	Surfacing	Other	Grade & Drain	Surfacing	Other
Principal Arterials	All	1 2 3	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	2,337 W 4,132 W 5,169 W	46,960 + 1,027 W	23,402 28,583 40,272	2,328 W 2,795 W 3,227 W	45,698 + 1,297 W	20,790 26,328 39,616
	0-100	4 5 6	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	2,109 W 3,876 W 5,298 W	24,439 + 753 W	16,849 19,141 27,590	1,497 W 2,035 W 2,348 W	23,761 + 912 W	11,531 13,899 21,556
	100-450	7 8 9	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	2,109 W 3,876 W 5,298 W	24,448 + 876 W	16,849 19,141 27,590	1,497 W 2,035 W 2,348 W	23,759 + 1,060 W	11,531 13,899 21,556
Minor Arterials	450-700	10 11 12	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	2,109 W 3,876 W 5,298 W	26,101 + 917 W 26,101 + 917 W 24,446 + 917 W	16,849 19,141 27,590	1,497 W 2,035 W 2,348 W	25,368 + 1,060 W 25,368 + 1,060 W 23,759 + 1,060 W	11,531 13,899 21,556
	700-1400	13 14 15	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	2,337 W 4,132 W 5,169 W	38,727 + 999 W 36,666 + 999 W 36,666 + 999 W	23,402 28,583 40,272	2,328 W 2,795 W 3,227 W	37,681 + 1,149 W 35,675 + 1,149 W 35,675 + 1,149 W	20,790 26,328 39,616
	1400-2800	16 17 18	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	2,337 W 4,132 W 5,169 W	42,844 + 1,027 W	23,402 28,583 40,272	2,328 W 2,795 W 3,227 W	41,688 + 1,260 W	20,790 26,328 39,616
	2800+	19 20 21	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	2,337 W 4,132 W 5,169 W	46,960 + 1,027 W	23,402 28,583 40,272	2,328 W 2,795 W 3,227 W	45,698 + 1,297 W	20,790 26,328 39,616
	0-100	22 23 24	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	2,109 W 3,876 W 5,298 W	22,785 + 753 W	16,849 19,141 27,590	1,497 W 2,035 W 2,348 W	22,152 + 912 W	11,531 13,899 21,556
	100-450	25 26 27	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	2,109 W 3,876 W 5,298 W	24,448 + 876 W	16,849 19,141 27,590	1,497 W 2,035 W 2,348 W	23,759 + 1,060 W	11,531 13,899 21,556
Collectors	450-700	28 29 30	2 2 2	F R M	F.A.S. F.A.S. F.A.S.	2,109 W 3,876 W 5,298 W	26,101 + 917 W 26,101 + 917 W 24,446 + 917 W	16,849 19,141 27,590	1,497 W 2,035 W 2,348 W	25,368 + 1,060 W 25,368 + 1,060 W 23,759 + 1,060 W	11,531 13,899 21,556
	700-1400	31 32 33	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	2,337 W 4,132 W 5,169 W	38,727 + 999 W 36,666 + 999 W 36,666 + 999 W	23,402 28,583 40,272	2,328 W 2,795 W 3,227 W	37,681 + 1,149 W 35,675 + 1,149 W 35,675 + 1,149 W	20,790 26,328 39,616
	1400-2800	34 35 36	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	2,337 W 4,132 W 5,169 W	42,844 + 1,027 W	23,402 28,583 40,272	2,328 W 2,795 W 3,227 W	41,688 + 1,260 W	20,790 26,328 39,616
	2800+	37 38 39	2 2 2	F R M	F.A.P. F.A.P. F.A.P.	2,337 W 4,132 W 5,169 W	46,960 + 1,027 W	23,402 28,583 40,272	2,328 W 2,795 W 3,227 W	45,698 + 1,297 W	20,790 26,328 39,616

•

B-6
NO.
LE
TAB

RURA	NL RIGHT	T-OF-	WAY	COST SUMM	ARY		IMPROVEME	NT: Reconstr	uction & Wideni	ng
							DEVELOPME	NT: Rural		
Functional	NOC		E	Take	Full Acces	ss Control	Partial Acc	cess Control	No Acces	s Control
Classification	N.S.U	Lanes	I err.	Acres/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile
	_	5	Ĺ	7.27	1,450	10,452	1,250	9,088	1,000	7,270
	1	4	ĹL,	19.15	1,450	27,768	1,250	23,938	1,000	19,150
Principal	0	0	R	8.63	1,250	10,788	1,050	9,062	006	7,767
Arterials	2	4	R	21.59	1,250	26,988	1,050	22,670	006	19,431
	3	2	Μ	10.18	006	9,162	750	7,635	650	6,617
	c	4	Μ	15.27	006	13,743	750	11,453	650	9,926
	4,7,10	2	ĹĽ,	8.49	1,200	10,188	1,000	8,490	850	7,217
	5,8,11	7	R	9.59	1,050	10,070	900	8,631	750	7,193
	6,9,12	0	Μ	10.85	006	9,765	750	8,138	650	7,053
	13,16	7	ĹĽ	7.27	1,200	8,724	1,000	7,270	850	6,180
	14,17	2	R	8.63	1,050	9.062	900	7,767	750	6,473
Minor	15,18	0	Μ	10.18	006	9,162	750	7,635	650	6,617
Arterials	19	7	ĹĽ	7.27	1,200	8,724	1,000	7,270	850	6,180
	19	4	ĹL,	19.15	1,200	22,980	1,000	19,150	850	16,278
	20	5	R	8.63	1,050	9,062	006	7,767	750	6,473
	20	4	R	21.59	1,050	22,670	006	19,431	750	16,193
	21	5	Μ	10.18	006	9,162	750	7,635	650	6,617
	21	4	Μ	15.27	006	13,743	750	11,453	650	9,926
	22,25,28	5	Ĺ	8.49					500	4,245
	23,26,29	5	R	9.59					400	3,836
Colloctorio	24,27,30	7	Μ	10.85					250	2,714
CONCELLOUS	31,34,37	0	Ĺ	7.27					500	3,635
	32,35,38	2	R	8.63					400	3,452
	33,36,39	7	Μ	10.18					250	2,545

B-14

B-7
0
ž
LE
B
LA

IMPROVEMENT: New Location

							DEVELOPMEI	VT: Rural		
Functional	NSQ	seuc	Terr	Take	Full Acces	ss Control	Partial Acc	ess Control	No Acces	s Control
Classification		Laires	1 111.	Acres/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile
	1	7	ĹĽ	19.39	1,300	25,207	1,100	21,329	006	17,451
	1	4	ĹŢ	34.91	1,300	45,383	1,100	38,401	006	31,419
Principal	2	7	R	20.75	1,100	22,825	950	19,713	750	15,563
Arterials	2	4	R	37.35	1,100	41,085	950	35,483	750	28,013
	3	5	W	22.30	800	17,840	700	15,610	550	12,265
9	3	4	M	31.03	800	24,824	200	21,721	550	17,067
	4,7,10	5	Ĺ	15.76	1,050	16,548	006	14,184	800	12,608
	5,8,11	C 1	R	16.86	006	15,174	800	13,488	700	11,802
	6,9,12	0	M	18.12	800	14,496	200	12,684	550	9,966
	13,16	5	ĹŢ	19.39	1,050	20,360	006	17,451	800	15,512
	14,17	7	R	20.75	006	18,675	800	16,600	700	14,525
Minor	15,18	7	Μ	22.30	800	17,840	700	15,610	550	12,265
Arterials	19	7	[Ţ_	19.39	1,050	20,360	006	17,451	800	15,512
	19	4	ĹŢ	34.91	1,050	36,656	006	31,419	800	27,928
	20	7	R	20.75	006	18,675	800	16,600	700	14,525
	20	4	R	37.35	006	33,615	800	29,880	700	26,145
	21	0	M	22.30	800	17,840	700	15,610	550	12,265
	21	4	M	31.03	800	24,824	200	21,721	550	17,067
	22,25,28	5	[T_	15.76					800	12,608
	23,26,29	7	R	16.86					650	10,959
Colloctore	24,27,30	0	Μ	18.12					500	9,060
CONCECTORS	31,34,37	0	ĹŢ	19.39					800	15,512
	32,35,38	0	R	20.75					650	13,488
	33,36,39	7	Μ	22.30					500	11,150

ABLE NO.	B-8	
ABLE	NO.	
	FABLE	

IMPROVEMENT: New Location

							DEVELOPME	NT: Dense		
Functional	Nor	I ocno	L L	Take	Full Acces	ss Control	Partial Acc	cess Control	No Acce	ss Control
Classification	N.O.U.	Lanes	I EII.	Acres/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile
	1	2	ĹŢ	7.27	2,800	20,356	2,400	17,448	1,950	14,177
	1	4	ĹŢ,	12.12	2,800	33,936	2,400	29,088	1,950	23,634
Principal	2	2	R	7.27	2,400	17,448	2,050	14,904	1,700	12,359
Arterials	2	4	R	12.12	2,400	29,088	2,050	24,846	1,700	20,604
	б	2	Μ	7.27	1,800	13,086	1,550	11,269	1,250	9,088
	3	4	M	12.12	1,800	21,816	1,550	18,786	1,250	15,150
	4,7,10	2	ĹŢ	7.27	2,800	20,356	2,400	17,448	1,950	14,177
	5,8,11	2	R	7.27	2,400	17,448	2,050	14,904	1,700	12,359
	6,9,12	2	Μ	7.27	1,800	13,086	1,550	11,269	1,250	9,088
	13,16	2	ĹĿ	7.27	2,800	20,356	2,400	17,448	1,950	14,177
	14,17	2	R	7.27	2,400	17,448	2,050	14,904	1,700	12,359
Minor	15,18	7	M	7.27	1,800	13,086	1,550	11,269	1,250	9,088
Arterials	19	0	ĹĿ	7.27	2,800	20,356	2,400	17,448	1,950	14,177
	19	4	ĹĿ	12.12	2,800	33,936	2,400	29,088	1,950	23,634
	20	2	R	7.27	2,400	17,448	1,050	14,904	1,700	12,359
	20	4	R	12.12	2,400	29,088	2,050	24,846	1,700	20,604
	21	2	M	7.27	1,800	13,086	1,550	11,269	1,250	9,088
	21	4	Μ	12.12	1,800	21,816	1,550	18,786	1,250	15,150
	22,25,28	5	ĹŢ	7.27					1,700	12,359
	23,26,29	2	R	7.27					1,400	10,178
Collectors	24,27,30	7	M	7.27					1,100	7,997
	31,34,37	2	Į۲	7.27					1,700	12,359
	32,35,38	7	R	7.27					1,400	10,178
	33,36,39	2	Μ	7.27					1,100	7,997

U 1
\sim
-
-*
\frown
\smile
T
5-3
1
~
-
E .
_
-

IMPROVEMENT: Reconstruction & Widening

							DEVELOPME	NI: Dense		
Functional	NSU	0000	Tour	Take	Full Acce	ss Control	Partial Acc	cess Control	No Acce	ss Control
Classification	.NI.C.U	Lalles	I GI I.	Acres/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile	Cost/Acre	Cost/Mile
	1	2	ĹŢ	W (.1212)	3,500	424 W	3,000	364 W	2,450	297 W
	1	4	ίŢ,	W (.1212)	3,500	424 W	3,000	364 W	2,450	297 W
Principal	2	2	R	W (.1212)	3,100	376 W	2,650	321 W	2,150	261 W
Arterials	2	4	R	W (.1212)	3,100	376 W	2,650	321 W	2,150	261 W
	3	2	M	W (.1212)	2,500	303 W	2,150	261 W	1,750	212 W
	3	4	W	W (.1212)	2,500	303 W	2,150	261 W	1,750	212 W
	4,7,10	3	ĹŢ,	W (.1212)	3,500	424 W	3,000	364 W	2,450	297 W
	5,8,11	2	R	W (.1212)	3,100	376 W	2,650	321 W	2,150	261 W
	6,9,12	2	M	W (.1212)	2,500	303 W	2,150	261 W	1,750	212 W
	13,16	2	ĹĽ	W (.1212)	3,500	424 W	3,000	364 W	2,450	297 W
	14,17	2	R	W (.1212)	3,100	376 W	2,650	321 W	2,150	261 W
Minor	15,18	2	Μ	W (.1212)	2,500	303 W	2,150	261 W	1,750	212 W
Arterials	19	2	ĹĽ	W (.1212)	3,500	424 W	3,000	364 W	2,450	297 W
	19	4	ĹЦ	W (.1212)	3,500	424 W	3,000	364 W	2,450	297 W
	20	2	R	W (.1212)	3,100	376 W	2,650	321 W	2,150	261 W
	20	4	R	W (.1212)	3,100	376 W	2,650	321 W	2,150	261 W
	21	2	Μ	W (.1212)	2,500	303 W	2,150	261 W	1,750	212 W
	21	4	W	W (.1212)	2,500	303 W	2,150	261 W	1,750	212 W
	22,25,28	2	Ц	W (.1212)					1,100	133 W
	23,26,29	7	R	W (.1212)					1,100	133 W
Collectors	24,27,30	0	M	W (.1212)					1,100	133 W
COTICC (013	31,34,37	2	ĹĹ	W (.1212)					1,100	133 W
	32,35,38	2	R	W (.1212)					1,100	133 W
1	33,36,39	2	Μ	W (.1212)					1,100	133 W

W = Additional right-of-way required.

B-17

TABLE NO. B-10URBAN COST SUMMARY NO. 1

Urban Area	DSN	Lanca	Madian	NEW LOCA	TION	RECONSTRU	UCTION
Classification	D.S.N.	Lanes	wieuran	Grade & Drain	"Other"	Grade & Drain	"Other"
		2	0	302,214	112,243	231,703	102,039
Urbanized	40,41,42	4	6'	364,608	163,593	280,468	148,721
		4	16'	410,761	184,301	315,970	167,546
		2	0	328,429	53,591	252,638	48,719
Small Urban	43,44,45	4	6'	437,927	102,367	336,867	93,061
		4	16'	493,360	115,325	379,508	104,841
		2	0	267,749	26,673	205,961	24,248
Urban-in-	46,47,48	4	6'	337,289	38,128	259,453	34,662
Rural		4	16'	379,984	42,955	292,295	39,050

URBAN CONSTRUCTION COSTS: Grade & Drain, "Other"

URBAN RIGHT-OF-WAY COSTS: Cost Per Foot Width Per Mile

Urban Area Classification	CBD & Fringe	Residential & OBD	Rural
Urbanized Areas	47,520	10,032	546
Small Urban (Pop.)			,
5,000 - 9,999	34,426	7,392	182
10,000 - 24,999	47,520	10,032	255
25,000 - 49,999	47,520	10,032	315
Urban-in-Rural ————————	34,426	7,392	182

URBAN COST SUMMARY NO. 2

URBAN CONSTRUCTION COSTS: Base & Surfacing

Urban Area	NOC		The second		COST AREA	ONE		COST AREA	TWO
Classification	N.C.U	Lanes	Median	New&Reconst.	Resurfacing	Widening	New&Reconst.	Resurfacing	Widening
	40	044	0 6' 16'	216,592 296,292 376,838	1,401 + 1,445(W)	176,691 + 922 W 225,719 + 922 W 297,240 + 922 W	218,669 307,676 385,939	1,280 + 1,348(W)	162,130 + 1,295 W 207,866 + 1,295 W 273,401 + 1,295 W
Urbanized Areas	41	044	0 6′ 16′	208,119 280,964 359,494	1,401 + 1,240(W)	168,221 + 922 W 210,394 + 922 W 279,900 + 922 W	207,522 287,682 363,343	1,280 + 1,157(W)	154,225 + 1,222 W 193,561 + 1,222 W 257,216 + 1,222 W
	42	044	0 6' 16'	196,431 259,676 335,387	1,401 + 1,042(W)	160,162 + 841 W 195,478 + 841 W 262,970 + 841 W	192,091 259,796 331,797	1,280 + 971(W)	146,705 + 1,043 W 179,641 + 1,043 W 241,416 + 1,043 W
	43	044	0 6' 16'	238,044 334,543 420,029	1,806 + 1,542(W)	181,005 + 1,324 W 233,440 + 1,324 W 305,963 + 1,324 W	242,167 349,533 433,198	1,651 + 1,438(W)	166,097 + 1,752 W 214,968 + 1,752 W 281,427 + 1,752 W
Small Urban	44	044	0 6′ 16′	225,692 311,871 394,324	1,806 + 1,296(W)	171,033 + 1,271 W 214,985 + 1,271 W 285,017 + 1,271 W	227,961 323,531 403,725	1,651 + 1,207(W)	156,785 + 1,637 W 197,742 + 1,637 W 261,872 + 1,637 W
	45	044	0 6′ 16′	215,954 294,778 375,067	1,806 + 1,296(W)	171,033 + 1,054 W 214,985 + 1,054 W 285,017 + 1,054 W	216,947 304,228 381,986	1,651 + 1,207(W)	156,785 + 1,390 W 197,742 + 1,390 W 261,872 + 1,390 W
	46	044	0 6' 16'	226,343 314,028 396,928	1,617 + 1,487(W)	178,544 + 1,120 W 229,095 + 1,120 W 301,070 + 1,120 W	226,885 322,744 403,024	1,482 + 1,389 (W)	163,919 + 1,462 W 211,127 + 1,462 W 277,096 + 1,462 W
Urban-in- Rural	47	044	0 6' 16'	214,893 292,985 373,058	1,617 + 1,250(W)	168,932 + 1,079 W 211,310 + 1,079 W 280,876 + 1,079 W	213,299 297,851 374,803	1,482 + 1,167(W)	154,927 + 1,353 W 194,486 + 1,353 W 258,207 + 1,353 W
	48	044	0 6' 16'	207,365 279,772 358,169	1,617 + 1,250(W)	168,932 + 910 W 211,310 + 910 W 280,876 + 910 W	204,783 282,928 357,997	1,482 + 1,167(W)	154,927 + 1,162 W 194,486 + 1,162 W 258,207 + 1,162 W

B-19

APPENDIX C

NEEDS ANALYSIS FOR

LOCAL ROADS AND STREETS

APPENDIX C

I.	Nee	ds Analysis for Local Roads and Streets	
	A.	Needs Analysis Procedure	C-1
	B.	Per-Mile Costs	C-1
	C.	Deficiency and Improvement Analysis for Local Roads and Streets	C-2
		(1) Urban Local Streets	C-2
		(2) Rural Local Roads	C-2

Table No. C-1:	Local Roads and Streets Total Construction Costs/Mile	C-4
Table No. C-2:	Local Road and Street Needs Summary	C-5

Page

I. NEEDS ANALYSIS FOR LOCAL ROADS AND STREETS

A. Needs Analysis Procedure

Due to the large percentage of local road and street mileage representing relatively low cost facilities, the needs for these roads and streets are determined on a total rather than on individual section basis. The new mileage was proportioned by design and surface type according to the percentages for each category developed from the field sample made for the 1970-1990 Study. New Interstate frontage roads were omitted from the rural mass analysis. However, the maintenance costs for those roads were included in the total needs. The mileage of new urban local streets was determined and included in a separate category in the urban mass analysis.

B. Per-Mile Costs

Per-mile construction costs were developed from unit price data applied to the local road and street design standard quantities. Total per-mile costs (rather than the annual per-mile costs used in the 1970-1990 Study) for each improvement type are given in Table C-1.

Structure costs were developed for rural local roads on a square-foot-per-mile basis as related to the tolerability of the road. In other words, a typical intolerable mile of rural local road would have a certain square footage of intolerable structures. These square-foot relationships are given below.

Square Feet of Intolerable Structures Per Mile

ADT < <u>50</u>	50-250	250+
Cost Area 1 1.172w	9.846w	57.524w
Cost Area 2 2.876w	6.862w	17.742w
w = roadway width		

No costs were developed for structures on urban local streets since they would represent an insignificant amount of the total costs.

Local road and street maintenance costs were derived from actual expenditures as listed in the *County and Local Road Fiscal Report* for fiscal year 1972. The total expenditures were divided by the total miles listed in the 1972 Road Log to produce both urban and rural maintenance costs.

Administrative costs were developed as a percentage of the total of construction and maintenance costs in the 1970-1990 Study. These percentages were left unchanged for this study. The administrative percentages for local roads and streets are given in Table No. 18, page 50.

C. Deficiency and Improvement Analysis for Local Roads and Streets

(1) Urban Local Streets

The urban local street mileage was stratified as tolerable or deficient for each of five design types. Each design type was divided into four surface types: high, intermediate, low, and gravel or graded and drained. All gravel or graded and drained sections in urban areas were considered presently deficient.

Improvements were categorized into five types: (1) new location, (2) reconstruction, (3) resurfacing (with sub-base), (4) resurfacing (overlay), and (5) no improvement. The improvement logic is relatively straight forward. All deficient mileage is upgraded to no less than the design standards. All gravel or graded and drained surfacing would require reconstruction and all deficient high, intermediate, or low surfacing would require resurfacing, either with sub-base or an overlay.

Resurfacing periods for paved roads were determined from survivor curves included in *Economic Analysis for Highways* by Robley Winfrey. Coupling this data with the assumption that the average life of all paved roads is equal to half their economic life results in the following percentages of presently tolerable paved roads, by surface type, that will require resurfacing by the end of the study period.

> High — 72% of presently tolerable miles require resurfacing Intermediate — 86% of presently tolerable miles require resurfacing Low — 100% of presently tolerable miles require resurfacing

(2) Rural Local Roads

The rural local road system was stratified in a manner similar to urban local streets. The difference is that only three surface types are required for the rural system: low, gravel, and graded and drained. All tolerable graded and drained roads in the low ADT design group will become deficient during the study period and require reconstruction to a gravel section. Graded and drained roads in higher ADT groups are considered presently deficient.

Gravel roads are assumed to have a total economic life of eight years. Resurfacing with 0.25 ft. of gravel every four years is considered adequate to maintain the surfacing thickness and replace the gravel lost due to traffic. The resurfacing costs for gravel roads reflect this assumption.

Again, the improvement logic dictates that any deficient section will be upgraded to no less than the design standards. In the low ADT group (less than 50 VPD), all graded and drained roads will be reconstructed to gravel; all gravel roads will be resurfaced every four years with 0.25 ft. of gravel; and all low type surfacing will be resurfaced with a 0.20 ft. overlay of plant mix. For the higher ADT design groups, all gravel and graded and drained roads will be reconstructed or resurfaced with sub-base and plant mix to a low type surfacing and all deficient low type surfacing will be resurfaced with 0.20 ft. of plant mix.

Road mix surfacing was found to be more expensive than the 0.20 ft. plant mix overlay and, therefore, was not included in the design standards.

A summary of urban and rural local road and street needs is given in Table C-2.

DON	Cost Area		IMPROVEME	Charact	M		
D.S.N.		1	2	3	4	Struct.	Maint.
				URBAN			
	1	0	0	0	70.152	0	39,880
60	2	Ő	Ő	Ő	61 453	Ő	0,000
00	Āvg.	0	0	0	65,803		
	1	432,639	432,639	118,134	44,895	0	
61	2	440,386	440,386	132,246	39,353	. 0	
	Avg.	436,513	436,513	125,190	42,124	0	
	1	290,273	290,273	0	30,162	0	
62	2	291,338	291,338	0	26,461	0	
	Avg.	290,806	290,806	0	28,312	0	
	1	319,162	319,162	69,840	32,267	0	
63	2	320,990	320,990	78,030	28,302	0	
	Avg.	320,076	320,076	73,944	30,285	0	
	1	365,210	365,210	83,286	38,581	0	
64	2	368,487	368,487	92,934	33,827	0	
	Avg.	366,849	366,849	88,110	36,204	0	
	1	82 167	54 297	0	33 295	633	11 490
50	2	80,325	60,540	0	33,350	1,553	11,120
	1	105.516	54,297	0	33,295	633	
51	2	87,436	60,540	0	33,350	1,553	
	1	124,315	54,297	0	33,295	633	
52	2	91,563	60,540	0	33,350	1,533	
	1	85,526	85,526	50,280	24,154	6,105	
53	2	78,071	78,071	55,652	23,488	4,254	
	1	120,550	120,550	50,280	24,154	6,105	
54	2	88,736	88,736	55,652	23,488	4,254	
	1	148,749	148,749	50,280	24,154	6,105	
55	2	94,927	94,927	55,652	23,488	4,254	
E.C.	1	108,567	108,567	50,280	24,154	35,665	
56	2	104,073	104,073	55,652	23,488	11,000	
67	1	155,266	155,266	50,280	24,154	35,665	
5/	2	118,294	118,294	55,652	23,488	11,000	
50	1	192,863	192,863	50,280	24,154	35,665	
28	2	126,548	126,548	55,652	23,488	11,000	
(2)	1	290,268	290,268	55,665	26,748	0	
02	2	291.338	291 338	61.612	26.010	0	

(1) 1 - New Location

2 - Reconstruction

3 - Resurfacing with sub-base

4 - Resurfacing, overlay

TABLE NO. C-1

LOCAL ROADS & STREETS TOTAL CONSTRUCTION COSTS/MILE

TABLE NO. C-2

LOCAL ROAD AND STREET NEEDS SUMMARY

		_				C-	5						
Total	Needs (x\$1000)		1,164,787	2,062,239	3,227,026		128,157	82,862	144,258	355,277	266,552	621,829	3,848,855
Admin.	Costs (x \$1000)		105,890	187,476	293,366		11,128	7,195	12,527	30,850	15,111	45,961	339,327
Total Maint. &	Construction Costs (x\$1000)		1,058,897	1,874,763	2,933,660		117,029	75,667	131,731	324,427	251,441	575,868	 3,509,528
Maintenance	Costs (x\$1000)		172,628	338,466	511,094		17,738	12,102	16,767	46,607	41,432	88,039	599,133
Total	Construction Costs (x\$1000)		886,269	1,536,297	2,422,566		99,291	63,565	114,964	277,820	210,009	487,829	2,910,395
OSTS	Future Needs (x\$1000)		128,340	645,796	774,136		84,063	40,254	87,926	212,243	136,440	348,683	1,122,819
TRUCTION C	Future Miles(2)		3,184.2	14,610.2	17,794.4		352.2	211.8	322.6	886.6	732.8	1,619.4	19,413.8
CONS	Backlog Needs (x\$1000)		757,929	890,501	1,648,430		15,228	23,311	27,038	65,577	73,569	139,146	1,787,576
	Deficient		11,869.5	14,915.5	26,785.0		63.1	71.9	85.2	220.2	241.1	461.3	 27,246.3
LES	Tolerable		3,184.2	14,610.2	17,794.4		155.6	125.9	77.8	359.3	474.0	833.3	18,627.7
IIW	New(1)		36.2	60.6	96.8		226.1	105.6	257.4	589.1	323.8	912.9	1,009.7
	Total		15,053.7	29,525.7	44,579.4		444.8	303.4	420.4	1,168.6	1,038.9	2,207.5	46,786.9
		RURAL	Cost Area 1 -	Cost Area 2 -	Total Rural	URBAN	Billings	Great Falls	Missoula	Total Urbanized	Small Urban –	Total Urban	State Total

(1) New rural mileage consists entirely of new Interstate Frontage Roads.

(2) Future miles are the tolerable miles that become deficient by 1990 as determined from survivor curve analyses.

